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Abstract—In this paper, we develop a framework -called
MAPLE to enable the aging-aware FPGA architecture explo-
ration. The core idea is to efficiently model the aging-induced
delay degradation at the coarse-grained FPGA basic block level
using deep neural networks (DNNs). For each type of the FPGA
basic block such as LUT and DSP, we first characterize its
accurate delay degradation via transistor-level SPICE simulation
under a versatile set of aging factors from the FPGA fabric
and in-field operation. Then we train one DNN model for each
block type to quickly and accurately predict the complex relation
between its delay degradation and comprehensive aging factors.
Moreover, we integrate our DNN models into the widely used
Verilog-to-Routing toolflow (VIR 8) to support analyzing the
impact of aging-induced delay degradation on the entire large-
scale FPGA architecture. Experimental results demonstrate that
MAPLE can predict the delay degradation of FPGA blocks 10*
to 107 times faster than transistor-level SPICE simulation, with
a prediction error less than 0.7%. Our case study demonstrates
that FPGA architects can effectively leverage MAPLE to explore
better aging-aware FPGA architectures.

I. INTRODUCTION

The continuous technology scaling has increased the tran-
sistor density of modern FPGAs to provide even higher
performance with billions of transistors. However, it has also
exacerbated the lifetime reliability issue for FPGA circuits
under accelerated transistor aging in the nanoscale era, which
would lead to performance degradation and even timing failure
[1]. This creates a big concern for critical application areas
such as aerospace, medical, and automotive industries [1].

Unfortunately, research on aging-induced delay degradation
analysis for FPGAs is still in its early stage. Most existing
studies have modeled the impact of aging on FPGA archi-
tectures with transistor-level SPICE simulation [2], [3]. Due
to the long simulation time with traditional transistor-level
approaches, it is impractical to comprehensively explore aging-
aware architecture choices for modern FPGAs with billions of
transistors under various aging factors.

In this paper, we present an accurate yet fast aging-aware
FPGA architecture exploration framework, named as MAPLE,
considering a comprehensive set of aging factors (summarized
in Section II). The core idea behind MAPLE is to raise the
modeling abstraction to the coarse-grained FPGA basic block
level to achieve faster speed and leverage deep neural networks
(DNNGs) to learn an accurate delay degradation model that can
achieve a similar accuracy to transistor-level simulation. We
build our technique on top of the widely used FPGA CAD
(Computer-Aided Design) flow VTR 8 [4] and enhance it with

Block level implemented
circuit graph

Implemented
User Design
" | e Application Stimuli
e Temperature

FPGA Architecture
e Underlying Circuit
e Fabrication
Technology

FPGA Fabric Factors@

Fig. 1: Overview of FPGA fabric and in-field factors affecting
FPGA aging at transistor and basic block levels. We use DNNs
to model FPGA delay degradation at basic block level.

the fast and accurate aging-aware static timing analysis feature.
Experimental results demonstrate that, compared to traditional
transistor-level SPICE simulation, MAPLE can predict the
aging-induced delay degradation for each FPGA soft and hard
block at least 10%x and 107x faster, while the prediction error
rate is less than 0.7%.

II. OUR PROPOSAL: DEGRADATION MODELING OF
FPGAS AT BASIC BLOCK LEVEL USING DNN

A. Aging Factors at Transistor Level

During the operation of a transistor, due to the defects
caused by the formation of interface traps and oxide traps,
the mobility of the transistor degrades and its threshold voltage
(Vi1,) increases. This reduces the drain current in the transistor
over the projected lifetime ¢, which ultimately increases the
transistor latency. As shown in Figure 1, delay degradation of
a transistor, i.e., Dy,(t), depends on two kinds of factors [5].
One is its environmental variations, including the temperature
(T), input signal probability (\)', and output load capacitance
(C). The second is the technology parameters, including the
power supply voltage (V4), initial threshold voltage (V34 (0)),
oxide thickness (th,, ), transistor’s length (L) and width (W).
Therefore, we have:

Dtr(t) = f(t,T,/\,C,Vdd,vth(O),thox,L,W) (1)

IThe signal probability of a wire in a circuit is defined as the probability
that a randomly generated input vector will produce a one value at the wire.



where f is a model function.

To accurately model the aging effects of an FPGA design,
one has to consider the delay degradation of all individual
transistors deployed in the mapped design. It is worth to
mention that each transistor across the circuit may be aged in
a different rate based on its physical and working conditions.
Considering the time-to-market of the FPGA designs, it is
impractical to model the aging behavior of designs mapped
onto state-of-the-art FPGAs that have billions of transistors
using the very time-consuming transistor-level simulation,
despite of its high accuracy.

B. Delay Degradation Model at FPGA Basic Block Level

An FPGA typically has a regular architecture, which is com-
prised of reconfigurable coarse-grained Basic Blocks (BBs),
such as LUT, adder, MUX, flip-flop, DSP, BRAM, and switch
and connection blocks. Therefore, we can leverage this regular
FPGA architecture to model aging-induced delay degradation
of benchmark circuits at the block level more efficiently.

To do this, we abstract a weighted circuit graph from a
mapped design on an FPGA. As shown in Figure 1, each
node represents an BB and each edge represents the wires
connecting two BBs. Note that the switch and connection
blocks are also modeled as BBs. The weights of a node
represent the delay degradation of the corresponding BB in
different paths, and the weights on an edge represent the
wire delays. Each BB inside the FPGA design has specific
transistor parameters and is also exposed to different operating
conditions. Since each BB has multiple inputs and outputs, and
multiple potential paths between each combination, we model
the lifetime delay degradation (D, ; ; (t)) for each BB (4) in
each specific path (j) as:

Dpb_i,j () = (t, Ti, Aijj, Cij, Vad_i, Ven_i(0), thox s, Li, Wj)
2
where )\;; is a vector of signal probability and C;; is a
vector of load capacitance for BB ¢ in path j; and W; is a
vector of transistor widths of BB ¢. Without loss of generality,
Ts, Vad_i, Vin_i(0), thos i, L; denote the working temperature,
power supply voltage, initial threshold voltage, oxide thick-
ness, and transistor length in BB 4. In this paper, we do not
consider the process variation, temperature variation and volt-
age drop across the chip. Hence, T;, Via i, Vin_i(0), thes i, L
are the same across BBs for a given fabrication technology.

C. DNN Modeling for Delay Degradation

Estimating the aging-induced delay degradation function
(i.e., f in Equation 2) for an FPGA basic block under a given
set of aging parameters could be considered as a regression
problem. DNNs are very promising in learning models for
regression problems by approximating complex and non-linear
functions. Therefore, we propose to estimate the complex
delay degradation function f using DNN models.

1) DNN Model: Considering the regression problem com-
plexity associated with the delay degradation model, we use
a fully-connected DNN model in this paper to provide an
accurate prediction. As shown in Figure 1, the input feature
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Fig. 2: Overview of our MAPLE framework.

vector P, which feeds to the neurons in the input layer,
corresponds to the input aging parameters of a BB (Equation
2). There is only one neuron in the output layer, which
corresponds to the estimated aging-induced delay degradation
for the BB in the corresponding circuit path, i.e., Dy ; ; (t).
There are n layers of hidden layers in the DNN. In general,
the relation between the input feature vector P and the output
Dg_;,j (t) can be expressed as:

Disy () = Wa - g™ 4 b; g© = P

Vk e [1,n—1], g% = f® (Wk gt 4 bk) ®)
where wy and by are respectively the weight matrix and bias
vector of the k'" hidden layer, which need to be trained for
the DNN. For the output layer, b, equals to zero. f*) is a
nonlinear activation function for the k' hidden layer and we
use the widely used ReLU (Rectified Linear Units) function.

2) Progressive DNN Training: We propose to design a
different DNN model for each block type that can predict
for this type of BB in different circuit paths: Each DNN
model has different number of hidden layers and different
number of neurons inside a hidden layer. Considering the
importance of both the prediction accuracy and prediction
time, our goal is to find the smallest DNN structure that
could predict accurate enough delay degradation. Therefore,
we propose a progressive training process to find the best DNN
structure for each block type. Considering the training time,
we limit the search of the number of hidden layers ranging
from 1 to 20, and the number of neurons in each hidden layer
as 256, 384, or 512. Note that each DNN model for a different
block type could be trained in parallel.

III. MAPLE FRAMEWORK

In this section, we introduce our MAPLE framework,
the first CAD tool that supports aging-aware timing analysis
for designs mapped onto large-scale FPGAs. An overview of
MAPLE is presented in Figure 2. Next, we explain each step
of MAPLE in more detail.
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Fig. 3: Detailed procedure of analyzing the aging-induced delay degradation of a benchmark circuit in MAPLE.

A. Pre-Characterization of Delay Degradation

The first step is to characterize the true delay degradation
values for each type of the BBs in an FPGA architecture.
These characterized results will be used to train the DNN
models in the next step. Figure 3 describes the detailed flow
to automatically characterize the delay degradation dataset for
each type of the FPGA basic block via accurate transistor-level
SPICE simulation. In a modern FPGA architecture, typically
there are two categories of blocks: 1) soft blocks such as
the LUT, which have relatively high reconfigurability and a
small number of transistors, and 2) hard blocks such as DSPs,
which have relatively low reconfigurability and a large number
of transistors. In the following, we explain how our toolflow
characterizes the soft blocks and hard blocks.

1) Pre-Characterization of Soft Blocks (and BRAM): To
explore the impact of different transistor parameters, shown
in Figure 3(al), we integrate our method with state-of-the-art
automatic FPGA transistor design tool called COFFE?2 [4] that
can automatically generate the transistor-level SPICE netlists
of FPGA’s blocks, which are required for delay measurement
for each block under the input technology parameters.

In order to generate meaningful training datasets for our
DNN model for a specific FPGA architecture under a set
of fabrication technology parameters, its floorplan is created
using the COFFE2 [4] tool. Note the FPGA floorplan varies for
different parameters, and affects the wire loads and eventually
the lifetime delay of each block inside the FPGA. For each
type of the basic block inside the floorplan, we generate the
corresponding SPICE netlists and perform transistor sizing
using COFFE2 [4]. At this step, the transistor sizing operation
could change the floorplan of the block. Thus, we calculate
the average area of the block and use it to update the FPGA
floorplan. Finally, we generate the SPICE netlist and perform

SPICE simulation for each block type under a wide range of
values for the aging parameters summarized in Section II to
generate the corresponding delay degradation values.

2) Pre-Characterization of Large Hard Blocks: For large
hard blocks such as DSP, simulating the entire block using
SPICE simulation is too time consuming, as will be illustrated
in Table II in Section IV-B. Therefore, we propose a different
flow shown in Figure 3(a2). The main idea is to create an
aging-aware cell library under different aging parameters, and
then use it to create a delay dataset for the entire hard
block using static timing analysis. For a given fabrication
technology and cell library, we use the lookup table based
method introduced for ASIC aging modeling [6] to create
the aging-aware cell library. For each library cell, we perform
the accurate SPICE simulation by changing a range of values
for the aging parameters summarized in Section II and then
create a lookup table where the input is the aging parameter
values and the output is the delay degradation value. Since we
use DNNs to learn the relation between aging parameters and
delay degradation, this library does not need to consider every
single aging condition and a lookup table approach turns to
be accurate enough for hard blocks (for training purpose).

Once the aging-aware cell library is built, the hard block
design in HDL (hardware description language) is synthesized,
placed and routed by a synthesis tool to generate the circuit
netlist that is composed of standard cells from the cell library.
By altering the aging parameters summarized in Section II,
an aging-aware delay dataset of the intended hard block is
generated. To pass the stimuli from the hard block to each cell
inside the block, we develop an activity estimator to extract the
stimuli of all cells in the hard block. The delay degradation of
each cell in the circuit netlist can be retrieved from the lookup
tables in the aging-aware cell library. Finally, a static timing



analysis tool is used to estimate the delay degradation of the
entire hard block.

B. DNN Modeling for Delay Degradation

As shown in Figure 3(b), using the characterized aging-
aware block delay degradation dataset, we train one DNN
model for each block type to learn the relation between its
input aging parameters and output delay degradation, where
multiple conditions of the block in different circuit paths are
considered. At the end, by using the proposed progressive
DNN training method explained in Section II-C2, we get a set
of trained DNN models that can estimate the delay degradation
for each FPGA block under different aging conditions in
different circuit paths with fast runtime and high accuracy.

C. Aging-Aware Static Timing Analysis

As shown in Figure 3(c), we estimate the lifetime delay of
the entire benchmark circuit by extending the built-in static
timing analysis (STA) engine of VTR 8, called Tatum [7], to
perform aging-aware STA. We use COFFE2 [4] to generate the
optimized circuit-level description of BBs. Then, we extract
transistor sizes and output loads parameters for each BB
and feed them into our DNN models. Moreover, the delay
degradation estimation also requires a profile detailing the
signal probability information for the entire circuit netlist. To
generate this information, we pass the circuit netlist to the
signal probability generator tool [8] to generate an activity
profile that contains signal probability and switching activity
information for every single node inside the circuit netlist
graph including the inputs of all blocks. Using the circuit
netlist and the activity profile, our DNN models can accurately
predict the lifetime delay of all deployed BBs of the FPGA.
Note that we have considered both the propagation delay and
slope. We have modified the VPR (Versatile Place and Route
in VTR 8) data structures so that the STA engine can exploit
our DNN models for delay degradation prediction. At last, the
computed lifetime delay of each graph node is passed to the
STA engine to calculate the lifetime delay of the entire circuit.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

For the FPGA architecture, we use the default Altera Stratix
IV like architecture supported by VTR 8 [4]. At the transistor-
level, in line with COFFE2, we use the 22nm predictive
technology model. The corresponding V4 and oxide thickness
(thes) value are 0.7V, 9.5A. The HSPICE MOSFET Model
Reliability Analysis (MOSRA) [9], [10] is used under different
aging conditions as summarized in Section II. The ranges for
other aging parameters are: 7: [10:120]°C, A: [0:1], C: [2:30]
fF, Vin(0): [-0.5:-0.1] V for PMOS transistors and [0.1:0.5] V
for NMOS transistors, and ¢: [0:10] years. We also consider 6
different W/ L ratios of each transistor: 1X, 2X, 4X, 8X, 16X,
and 32X to have enough variety of transistor sizes per block
by their combinations.

We build our DNN models in MAPLE based on Google’s
Tensorflow framework. The training of the DNN models runs

TABLE I: Model accuracy and prediction runtime comparison
with SPICE simulation for major FPGA soft blocks

Inaccuracy Runtime
Major Blocks in RMSPE | Our Model | (' \CF
imulation
LUT 0.46% 9.55 x10~%s 16.05s
MUX 0.33% 9.10 x10~%s 12.02s
FF 0.26% 7.38 x10~%s 8.69s
Switch block 0.37% 9.14 x10~%s 10.31s
Connection block 0.48% 9.61 x10~7s 14.70s
BRAM 0.53% 9.16 x10~%s 21.57s

TABLE II: Model accuracy and prediction runtime comparison
with SPICE-based STA for major FPGA hard blocks

Major Inaccuracy Runtime

. LUT SPICE
Blocks in RMSPE Our Model + STA + STA
DSP 0.61% 9.56 x10~%s | 0.83s | 69,225.74s
Multiplier 0.54% 9.16 x10~%s 0.61s 24,462.13s

on a Nvidia Titan V GPU. All the rest of our tools, including
the DNN model prediction, run on a server with an Intel Core
17 (4 GHz) processor and 16GB of DRAM. The whole process
of generating the DNN model for each block type, including
preparing the true delays and the DNN training process, takes
about 2 hours and 40 minutes. A typical FPGA architecture
has less than 20 block types, which can be trained in parallel
using multiple CPU and GPU servers.

B. Accuracy and Runtime at Block Level

Model accuracy. Table I lists the accuracy validation results
for some major FPGA soft blocks and BRAM; due to space
constraint, we omit the full list. As shown in the second
column, we calculate the Root Mean Squared Percentage Error
(RMSPE) between our predicted delays (D;) and true delays
(f)i). RMSPE is a robust indicator of the model accuracy [11]
: the lower RMSPE is, the more accurate the model is. The
very low RSMPE (less than 0.7%) validates that our DNN
models are very accurate in predicting the block level delays.
Table II presents the accuracy results for major hard blocks
such as the Stratix IV like DSP and multiplier. For the accuracy
verification purpose, we first perform SPICE simulation for
each cell inside the hard block, and then run STA to get
the delay degradation for the entire hard block. We call this
method as SPICE-based STA, shown as SPICE + STA in Table
II. Compared to the SPICE-based STA approach, the error rate
of our DNN model prediction is around 0.6%.
Model prediction time. As shown in Table I, on average, our
DNN model prediction for soft blocks is about 10*x faster than
the transistor-level SPICE simulation. Shown in Table II, on
average, our DNN model prediction for hard blocks is about
107x faster than the SPICE-based STA approach. The LUT +
STA (i.e., table lookup + STA) approach is about 10*x slower
than our DNN prediction, since STA is much slower.

C. Accuracy and Runtime at Circuit Level

Model accuracy. To further verify the accuracy of our pro-
posed model for predicting the lifetime delay of an FPGA



TABLE III: Model accuracy and prediction runtime compari-
son with SPICE simulation for some synthetic FPGA circuits

Inaccuracy Runtime
Circuit || #blocks | 4" RMSPE | Our Model SPICE
Simulation
Cl 24 1.01% 87.51x10~%s 18,800.89s
Cc2 54 1.07% 140.37x10~%s 54,253.81s
C3 96 1.1% 195.62x10~%s | 111,526.89s
C4 109 1.08% 218.59x10~%s | 156,856.49s

design, we calculate its cumulative RMSPE (cRMSPE) that
includes the accumulation and propagation of all errors for
estimating the delay of each individual block inside an FPGA
design. The cRMSPE is calculated by comparing our predicted
FPGA lifetime delay with the true one from SPICE simulation.
Since the SPICE simulation is very time consuming, we only
demonstrate the prediction accuracy for a few small synthetic
FPGA designs in Table III, which mimic critical paths in large
circuits. For all these synthetic FPGA circuits, their cRMSPE
is around 1%, which validates that our models are accurate
enough to estimate the lifetime delay of FPGA circuits.
Model prediction time. As shown in Table III, at the FPGA
circuit level, our DNN model prediction is about 106 — 107x
faster than the transistor-level SPICE simulation, since the
SPICE simulation time grows significantly with more blocks.
We have also used MAPLE to perform aging-aware STA for
large circuits, which takes around 6.1 seconds for a benchmark
with around 100,000 LUTs.

D. Case Study: Aging-Aware FPGA Architecture Exploration

We present one case study with MAPLE to illustrate the
impact of aging on FPGA architecture design choices. We
explore 12 different parameters of an Altera Stratix IV like
architecture in which the LUT input size (K) and cluster size
(N) change. We choose the MCNC benchmark circuits as they
are useful in architectural exploration [12]. We run benchmark
circuits on the these various architectures to get the initial
delay without aging (blue dots in Figure 4) and the aging-
induced lifetime delay (red dots in Figure 4) after 10 years
under a temperature of 50°C.

Figure 4 presents the geometric mean of delays and areas
across all benchmark circuits for each architecture choice. Typ-
ically, the architecture that has the lowest area-delay product is
chosen as the best FPGA architecture. As shown in Figure 4,
if the aging impact is not considered, the architecture K4_N9
will be chosen since it has the lowest area-delay product
among all blue dots (circled), which is in line with prior
studies [12]. However, if the aging impact is considered, the
architecture K4_N10 will be chosen as it has the lowest area-
delay product among all red dots (circled).

V. CONCLUSION
In this paper, we have presented MAPLE, the first CAD
framework that enables fast and accurate aging-aware FPGA
architecture exploration. MAPLE trains deep neural networks
(DNNps) to learn the FPGA delay degradation at the basic block
level under a comprehensive set of aging factors from both the
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Fig. 4: Impact of aging on FPGA architecture exploration.
Blue and red dots denote initial delay and lifetime delay.

FPGA fabric and in-field operation. As a result, it achieves
10* to 107 times faster speed over traditional transistor-level
SPICE simulation, while achieving almost the same accuracy.
Moreover, we have enhanced VTR 8 with aging-aware static
timing analysis to enable the aging analysis for the entire
circuit that runs on top of the FPGA architecture.
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