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Abstract
With the trend of adopting FPGAs in data centers, various
FPGA acceleration platforms have been developed in recent
years. Each server could incorporate one or many of these FP-
GAs at different compute hierarchy levels to match its work-
load intensity. FPGAs could either be used as IO-attached
accelerators or be closely integrated with CPU as on-chip
co-processors. For a more data-centric approach, an FPGA
could be moved closer to the data medium (RAM or disk)
and serve as a near-memory or near-storage accelerator.

In this work, we present a quantitative model and in-depth
analysis of application characteristics to determine when an
application is more suitable for each acceleration hierarchy.
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1 Introduction
The increasing demand on power-efficient computing in
today’s data centers, has sparked a growing number of
CPU-FPGA acceleration platforms that can be reconfigured
to accelerate a broad class of applications with orders-of-
magnitude performance/watt gains. Attaching FPGAs as an
IO-attached accelerator (Section 2.1.1) is the most common
way to deploy accelerators in the systems, especially for
compute-intensive applications. While the performance and
energy gains of such platforms are promising, their appli-
cability is constrained by the working set size that cannot
exceed the accelerator’s private DRAM capacity.
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A typical server workload could comprise a diverse set
of compute- and communication-bound applications [19]. A
number of these applications are presented in Figure 3 to 5.
They often interact with in-memory or in-storage datasets,
and their throughput is crucial to the user experience. But to-
day’s commodity hardware solutions often follow a compute-
centric design, which lacks adequate data access bandwidth
for many of these use-cases and leads to substantial data
transfer latency and energy consumption.
The potential benefits of data-centric computing have

led to renewed research interest in near data processing
(NDP) architectures in recent years. A large number of near-
memory [8, 11, 22, 24, 25] and near-storage [10, 13, 14, 20]
accelerator models have been proposed and studied (Sec-
tion 2.2). We expect to see heterogeneous server racks with
one or more types of these FPGA resources, being available
for server workloads in near future. Thus, it is crucial to an-
alyze the suitability of each FPGA resource for accelerating
commonly used data center applications.
In this work, we present an in-depth analysis of appli-

cations’ qualitative and quantitative attributes to derive a
first-order performance model that could answer the fol-
lowing questions: (1) Could all applications dealing with
in-storage/in-memory datasets benefit from a data-centric
acceleration? (2) How would the performance change for
each application, as we change the accelerator type and sys-
tem configuration? To the best of our knowledge, this is
the first work to evaluate all four categories of FPGA-based
accelerators for data center applications.

2 Background and Related Work
2.1 Compute-Centric Acceleration
2.1.1 PCIe-Attached Private-Memory Accelerators.
The most common integration is to connect an FPGA board
equipped with private memory to a CPU via PCIe (Fig-
ure 1a). Amazon EC2 F1 instances [3] and Microsoft Catapult
boards [9] use such integration due to its flexibility and easy
plug-in. They are usually limited by the effective PCIe band-
width and latency between the host CPU and FPGA. Thus,
they are best suitable for coarse-grained tasks that have an
initial large payload transfer to the private device memory,
followed by high data reuse. If a dataset can fit in on-chip
memory or the on-board DRAM (e.g., 32GB or 64GB DDR4)
of a PCIe-attached FPGA, it could benefit from this platform.
However, many datasets exceed the device memory capacity.
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Figure 1. Compute-centric FPGA acceleration platforms

2.1.2 Shared-Memory On-Chip Accelerators. Unlike
FPGA DRAM, the host-side DRAM capacity could be much
larger than 64GB. To leverage the higher memory bandwidth
and capacity, a closer server-FPGA integration has been pro-
posed, where it couples the CPU and FPGA into a single
package and provides a shared memory, cache-coherent in-
terface to allow seamless data access to CPU cache or mem-
ory (Figure 1b). Recently, Intel has introduced two such on-
chip FPGA platforms (AgileX [6], XeonSP [4]) that connect
the Xeon processor and FPGA fabric in the same package
through a cache-coherent interface. Xilinx has also intro-
duced Versal ACAP platform [5] that connects the FPGA to
the host CPU using CCIX (Cache Coherent Interconnect for
Accelerators) link [1]. Moreover, with the capability of swap-
ping partial bitstreams in less than a millisecond, the Versal
ACAP could be utilized by multiple real-time applications
simultaneously. However, once the working set exceeds the
on-chip cache capacity, the acceleration is limited by the
off-chip memory access latency and bandwidth.

2.2 Data-Centric Acceleration
2.2.1 Near-Memory Accelerators. The advancement of
emerging memory and 3D stacking technologies is consid-
ered as the true enabler of processing close to memory. The
stacking of the logic die and memory using through-silicon
via (TSV) allows lower memory access latency and higher
bandwidth. High bandwidth Memory (HBM) [18] from AMD
and Hynix, and Samsung’s Wide I/O [15] are the memory
industries’ competing 3D memory products. The logic die
contains a dedicated memory controller, and could encom-
pass simple SIMD cores or an embedded FPGA chip for data
analysis. However, WideIO is used for mobile SoC systems
and HBM is costly to populate the server memory and re-
place conventional DDR4.

Thus, we focus on near-memory accelerators for conven-
tional DRAM architecture. Today’s high-end servers have
a limited number of memory channels per socket. Multiple
DIMMs often share the same memory channel, which limits
the overall bandwidth to the CPU. Near DRAM accelerators
help achieve a lower latency and a higher bandwidth. For
instance, Copacobana [17] builds FPGA modules directly
into DIMMs. AIM [11] places FPGA modules between each
DIMM and the memory bus, making the design noninvasive
to the existing memory controller, memory bus and DIMMs.
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Figure 2. Data-centric FPGA acceleration platforms

Contutto [25] prototypes such idea by plugging accelerators
in DIMM slots in a POWER8 machine and shows acceler-
ation with end-to-end experiments. Our platform setup is
most similar to AIM (Figure 2a).

2.2.2 Near-Storage Accelerators. With a revolution of
non-volatile memory (NVM) technologies and more power-
ful embedded processors, the idea of near-storage acceler-
ation has recently redrawn considerable attentions [10, 13,
14, 16]. This is mainly because an NVM-based SSD normally
has a very high internal bandwidth, exceeding its external
bandwidth to host by factors of 2x to 4x [10]. Therefore,
processing data near-storage could achieve higher perfor-
mance and save more energy than transferring data all the
way to the host CPU. Several studies in NVM-based near-
storage accelerators have been reported recently in academia
and industry. Projects such as Samsung SmartSSD [13], IBM
Netezza [23], Mobiveil [2], Willow [21] and BlueDBM [14]
place FPGA units between the flash controller and the host
IO interface. Our near-storage accelerator follows a simi-
lar architecture (Fig 2b). Flash chips have to be accessed in
data-block granularity (4KB or 8KB). So, our near-storage
accelerator features a standalone 1GB DRAM buffer, in order
to hide the access granularity problem.

3 Workload Characterization
We evaluate 18 widely deployed accelerators from the Xil-
inx Vitis Library [7] and a few of our own extended from
the PARADE simulation suite [12], which come from five
diverse domains: search, security, database, vision, and fi-
nance. To minimize and amortize the data movement cost for
a long period of time, there are a few application-specific and
kernel-specific characteristics that help choose the best accel-
eration platform. From here, we refer to our four acceleration
platforms by compute level: PCIe, on-chip, near-memory and
near-storage levels.

3.1 Application-Specific Characteristics
There could be multiple FPGA kernels designed for a given
application. However, there are certain attributes that are
more dependent on the use-case of an application rather
than the FPGA kernel itself, which play a role in selecting
or ruling out a compute level.
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Figure 3. The ratio (𝛾 ) of the kernel’s input to output size.
For abbreviation in the figure, PHJ: Partition Hash Join; Aggr:
Aggregate; Hist: EqualizeHist; VJ: Viola-Jones; B-Sch: Black-
Scholes.

1) Memory Capacity Requirement: The total data size that
is potentially accessed, modified or generated by the same
application’s threads over a long period of time.
2) Working Set Size (WSS): We define WSS as the subset

of the memory capacity that is required to process a single
application call. For instance, a query processing engine
equipped with Join, Aggregate and Partition FPGA kernels,
might receive consecutive queries that target dozens of SQL
tables, while working on a single table (or two) for each
query. We consider the entire database size as the memory
capacity and the size of the requested database tables per
query as the working set size.
3) Input/Output Data Flow: If an application data flow

never requires access to the storage level, then we would
certainly rule out a near-storage acceleration. Similarly, if an
application requires an in-situ manipulation of data (read-
modify-write), then we would favor the near-storage or near-
memory accelerators.

4) Data Reduction Ratio (𝛾 ): The main motivation of near-
data processing is to leverage the higher internal bandwidth.
So, if an application input size is the same as or higher than
its output size (𝛾 >= 1), the application speed-up will be
bound to the interconnection bandwidth for input. Figure 3
shows the reduction ratio 𝛾 of our applications. The higher
𝛾 is, the more chance near-data acceleration has to win.

3.2 Kernel-Specific Characteristics
For a given FPGA kernel, there is plenty of useful informa-
tion that can be extracted from the kernel and its high-level
synthesis, which helps us derive a performance model.
1) Kernel Frequency (Freq), Initiation Interval (II) and in-

put/output bit-width (datawidth): These help us compute the
approximate computing time and maximum analytical band-
width 𝑏𝑤𝑝𝑒𝑎𝑘 = 𝑑𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ × 𝐹𝑟𝑒𝑞/𝐼 𝐼 . II is the number of
cycles that the FPGA kernel takes to process one input of
𝑑𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ size, which shows the computational intensity
of a kernel. Based on 𝑏𝑤𝑝𝑒𝑎𝑘 , one can determine if a kernel
would ever saturate the bandwidth of the attached memory
module. Figure 4 shows the peak bandwidth per FPGA kernel.
Applications like AES-enc and Viola-Jones have a low peak
bandwidth and will not benefit from running near storage.
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Figure 4. The analytical required bandwidth of the kernel

2) Attached memory access pattern: This helps us estimate
the effective bandwidth utilization of the attached memory.
Sequential access with large burst size result in higher effec-
tive bandwidth than scatter or gather patterns. The effective
bandwidth of a tiled access depends on the tile row size.

3) Multi-pass over the data (𝛼): Maximum analytical band-
width does not take into account the number of passes over
the input data. Realistically, we have to multiply the data
access time by 𝛼 .
4) Intermediate data size ratio (𝛽): Similar to multiple

passes over the input data, another contributing factor to
the execution time is the generated intermediate data size.

4 Performance Model
To guide the platform selection, we present a first-order per-
formance model based on features from Section 3, assuming
initial datasets are in storage. All of our FPGA-based accel-
erators have an on-chip scratchpad memory (SPM) and use
the Xilinx AXI stream interface to communicate with the
attached memory level. The AXI stream interface supports a
maximum bus bit-width of 4,096. We adopt a three-stage ac-
celerator execution model (load-compute-store) and double-
buffering in SPM. The three stages can be scheduled to run
concurrently. Therefore, the execution time of each compute
level 𝑙 follows this equation:

𝑇 (𝑙) = 𝑇𝑖𝑛𝑖𝑡 (𝑙) +𝑚𝑎𝑥 (𝑇𝑙𝑜𝑎𝑑 (𝑙),𝑇𝑐𝑜𝑚𝑝 (𝑙),𝑇𝑠𝑡𝑜𝑟𝑒 (𝑙)) (1)

The compute time follows this equation:

𝑇𝑐𝑜𝑚𝑝 (𝑙) =
(𝛼 + 𝛽)𝐷𝑖𝑛

𝑑𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ
× 𝐼 𝐼

𝐹𝑟𝑒𝑞𝑙
× 1
#𝑃𝐸𝑙

(2)

where 𝐷𝑖𝑛 is the size of input data, and #𝑃𝐸𝑙 is the number
of concurrent processing elements (PEs).
1) For near-storage (ns) FPGA: The near-storage FPGA
uses its own DRAM buffer as caching for intermediate vari-
ables (𝛽𝐷𝑖𝑛). 𝑇𝑖𝑛𝑖𝑡 (𝑛𝑠) = 0 as there is no initial data loading.

𝑇𝑙𝑜𝑎𝑑 (𝑛𝑠) =
𝛼𝐷𝑖𝑛

𝑏𝑤𝑛𝑣𝑚

+ 𝛽𝐷𝑖𝑛

𝑏𝑤𝑑𝑑𝑟

(3)

𝑇𝑠𝑡𝑜𝑟𝑒 (𝑛𝑠) =
𝐷𝑜𝑢𝑡

𝑏𝑤𝑛𝑣𝑚

=
𝐷𝑖𝑛

𝛾 × 𝑏𝑤𝑛𝑣𝑚

(4)

where 𝑏𝑤𝑛𝑣𝑚 and 𝑏𝑤𝑑𝑑𝑟 are the collective bandwidths of
the NVM channels and local DRAM buffers.
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Figure 5. Application throughput for in-storage datasets based on four acceleration platforms

2) For PCIe-attached FPGA: We assume a direct PCIe con-
nection between the FPGA and the host storage, and thus
𝑇𝑖𝑛𝑖𝑡 (𝑝𝑐𝑖𝑒) = 0.

𝑇𝑙𝑜𝑎𝑑 (𝑝𝑐𝑖𝑒) =
𝛼𝐷𝑖𝑛

𝑏𝑤ℎ𝑜𝑠𝑡𝐼𝑂

+ 𝛽𝐷𝑖𝑛

𝑏𝑤𝑑𝑑𝑟

(5)

𝑇𝑠𝑡𝑜𝑟𝑒 (𝑝𝑐𝑖𝑒) =
𝐷𝑖𝑛

𝛾 × 𝑏𝑤ℎ𝑜𝑠𝑡𝐼𝑂

(6)

where 𝑏𝑤ℎ𝑜𝑠𝑡𝐼𝑂 is the effective bandwidth of the PCIe.
3) For near-memory (nm) and on-chip (oc) FPGAs: Both
on-chip and near-memory FPGAs incur a one-time data
transfer time from storage to DDR: 𝑇𝑖𝑛𝑖𝑡 (𝑜𝑐) = 𝑇𝑖𝑛𝑖𝑡 (𝑛𝑚) =
𝐷𝑖𝑛/𝑏𝑤ℎ𝑜𝑠𝑡𝐼𝑂 .

Their load and store time follows the equations below.

𝑇𝑙𝑜𝑎𝑑 (𝑛𝑚) = (𝛼 + 𝛽)𝐷𝑖𝑛

𝑏𝑤𝑑𝑑𝑟 (𝑛𝑚) , 𝑇𝑠𝑡𝑜𝑟𝑒 (𝑛𝑚) = 𝐷𝑖𝑛

𝛾 × 𝑏𝑤𝑑𝑑𝑟 (𝑛𝑚)
(7)

𝑇𝑙𝑜𝑎𝑑 (𝑜𝑐) =
𝛼𝐷𝑖𝑛

𝑏𝑤𝑑𝑑𝑟 (𝑜𝑐)
+ 𝛽𝐷𝑖𝑛

𝑏𝑤𝑙𝑙𝑐

, 𝑇𝑠𝑡𝑜𝑟𝑒 (𝑜𝑐) =
𝐷𝑖𝑛

𝛾 × 𝑏𝑤𝑑𝑑𝑟 (𝑜𝑐)
(8)

where the collective memory bandwidth (𝑏𝑤𝑑𝑑𝑟 (𝑛𝑚)) of
near-memory FPGAs depends on the number of DIMMs,
while the (𝑏𝑤𝑑𝑑𝑟 (𝑜𝑐)) for on-chip FPGAs depends on the
number of memory channels. Thus, 𝑏𝑤𝑑𝑑𝑟 (𝑛𝑚) is much
higher than 𝑏𝑤𝑑𝑑𝑟 (𝑜𝑐). 𝑏𝑤𝑙𝑙𝑐 is the collective bandwidth of
the last-level cache.

4.1 Model Evaluation and Validation
We analyze a system that consists of one on-chip FPGA, one
PCIe-attached FPGA, four DDR4 DIMMs and four NVMe
SSDs (each DIMM/SSD connected to one FPGA). As shown in
Figure 5, we find that simple kernels with no data reuse and a
high reduction ratio—e.g., many applications from the search
and database domains—benefit the most from mapping to
near-storage accelerators. Second, for compute-bound appli-
cations such as in security, finance and vision domains and
some from database domain, it helps to stream the data to
a more powerful PCIe-attached accelerator. Moreover, for

communication-bound applications, the throughput is ulti-
mately bound by the near-storage accelerator’s performance.
For model validation, we extend the cycle-accurate sim-

ulator PARADE [12] to model the four categories of accel-
erators and their attached memory modules. We convert
six of our applications into simulator-compatible versions
and plug in their parameters. Table 1 compares the best
performing platform for each benchmark according to our
model and simulation results: four out of six applications
have a similar selection. Meanwhile, the simulation shows
that the performance gap between on-chip, near-memory
and PCIe-attached accelerator are much smaller than what
the model suggests. We realize that many of the applications
(e.g. GeMM, Swaption) consist of consecutive accelerator ker-
nel calls and each accelerator call works on part of the input
data. So, the 𝑇𝑖𝑛𝑖𝑡 (𝑜𝑐) and 𝑇𝑖𝑛𝑖𝑡 (𝑛𝑚) are partially concealed
by the kernel executions. For applications with multiple ker-
nel calls, we could include𝑇𝑖𝑛𝑖𝑡 as part of the𝑇𝑙𝑜𝑎𝑑 for a more
fair comparison.

Table 1. Preliminary model validation

Conv GeMM KNN VJ B-Sch Swaption

Modeling PCIe PCIe NS PCIe PCIe PCIe
Simulation OC/PCIe NM NS PCIe PCIe NM/OC

Matching ✓ × ✓ ✓ ✓ ×

5 Conclusion
In this work, we present an in-depth analysis of applications’
qualitative and quantitative attributes and derive a first-order
performance model for near-data FPGA platform selection.
In future work, we plan to validate more benchmarks and
address other limitations of our performance model.
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