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Compared to conventional artificial neural networks, Spiking Neural Networks (SNNs) are more biologically
plausible and require less computation due to their event-driven nature of spiking neurons. However, the
default asynchronous execution of SNNs also poses great challenges to accelerate their performance on FPGAs.

In this work, we present a novel synchronous approach for rate encoding based SNNs , which is more
hardware friendly than conventional asynchronous approaches. We first quantitatively evaluate and math-
ematically prove that the proposed synchronous approach and asynchronous implementation alternatives
of rate encoding based SNNs are similar in terms of inference accuracy and we highlight the computational
performance advantage of using SyncNN over asynchronous approach. We also design and implement the
SyncNN framework to accelerate SNNs on Xilinx ARM-FPGA SoCs in a synchronous fashion. To improve the
computation and memory access efficiency, we first quantize the network weights to 16-bit, 8-bit, and 4-bit
fixed-point values with the SNN friendly quantization techniques. Moreover, we encode only the activated
neurons by recording their positions and corresponding number of spikes to fully utilize the event-driven
characteristics of SNNs, instead of using the common binary encoding (i.e., 1 for a spike and 0 for no spike).

For the encoded neurons that have dynamic and irregular access patterns, we design parameterized compute
engines to accelerate their performance on the FPGA, where we explore various parallelization strategies
and memory access optimizations. Our experimental results on multiple Xilinx ARM-FPGA SoC boards
demonstrate that our SyncNN is scalable to run multiple networks, such as LeNet, Network in Network,
and VGG, on various datasets such as MNIST, SVHN, and CIFAR-10. SyncNN not only achieves competitive
accuracy (99.6%) but also achieves state-of-the-art performance (13,086 frames per second) for the MNIST
dataset. Finally, we compare the performance of SyncNN with conventional CNNs using the Vitis AI and find
that SyncNN can achieve similar accuracy and better performance compared to Vitis AI for image classification
using small networks.
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1 INTRODUCTION
Neural networks (NNs) have been widely used in many areas such as image classification, speech
recognition, and automated control [16]. More recently, SNNs, often referred to as the third-
generation NNs, have attracted increasing attention because they are more biologically plausible
and havemore potential for hardware acceleration [26]. SNNs process spikes based on themembrane
potential of the neurons and are modeled in accordance to the actual neural system of the human
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brain [18]. Compared to artificial NNs (ANNs)—such as the widely used convolutional NNs (CNNs)—
where all neurons in each layer are activated and computed, SNNs only activate those neurons
whose membrane potential exceeds the threshold potential [26]. This event-driven nature greatly
reduces the computation and communication between neurons.

The process of representing neural spikes (i.e., information) in SNNs is called neural encoding and
there are two major approaches: rate encoding and temporal encoding. Temporal encoding requires
spike based training mechanisms to train the time interval between spikes along with the network
parameters [1, 2, 10, 20, 27, 35]. However, the temporal information processing capability limits the
scope of exploring SNNs only for shallow networks [31]. On the other hand, rate encoding—where
the number of spikes in an encoding window is proportional to the numerical value to be encoded—
does not need any additional trained information and allows to directly convert the trained ANN
models to SNN fashion for evaluation [4, 7, 13, 29]. More recently, the CNN-to-SNN converted
models have achieved very good accuracy for deep networks such as VGG and ResNet [31]. In this
work, we focus on the conversion based rate encoding SNNs to explore deeper networks on FPGAs.

In rate encoding SNNs, the input information (e.g., image pixels) is converted to spikes for an
encoding window (i.e., multiple timesteps). At each timestep, the spikes carry the information
along the layers in the network. The default asynchronous execution flow of SNNs enables the
hardware to run all the layers concurrently in a pipeline fashion at any timestep [9]. However,
the asynchronous execution also poses great challenges for implementing deeper networks on
hardware. First, the network parameters have to be on chip for all the layers, which makes it not
feasible to run deeper networks on edge devices. Second, the layer with the highest workload
becomes the bottleneck and the resources allocated to other layers in the network remain idle for
most of the time. Lastly, for deeper networks, the encoding window grows much larger to achieve
the required accuracy, and thus running the entire network for many timesteps could make the
SNN even slower than the original ANN.

In this paper, we propose a novel synchronous SNN, called SyncNN, to overcome those challenges.
Instead of running the entire network for multiple timesteps, we only run the input layer—that
converts the inputs to spikes—for multiple timesteps, and encode the number of spikes for each
neuron. After that, we compute the remaining layers of the network in a synchronous layer-by-
layer fashion, for just one timestep. SyncNN preserves the event-driven feature of SNNs by only
activating those neurons whose aggregated membrane potential exceeds the threshold; for each
spiked neuron, we also encode the number of effective spikes based on its aggregated membrane
potential. We prove that the proposed SyncNN based approach is mathematically the same in terms
of computation and would achieve the same accuracy as the asynchronous approach. SyncNN
addresses the aforementioned challenges, and opens more opportunities for hardware acceleration.
To achieve real-time SNN inference, especially for deep SNNs that can achieve better accuracy,

we accelerate SyncNN on Xilinx ARM-FPGA System-on-Chips (SoCs) using high-level synthesis
(HLS) C++. To reduce the computing operations and memory accesses, we apply two algorithmic
optimizations. First, instead of using the general binary encoding that encodes all neurons as 0 and 1,
we record only the neurons that have spiked, by encoding their positions and corresponding number
of spikes. Second, we quantize the network weights to 16 bits, 8 bits and 4 bits using SNN friendly
quantization that puts more priority in weights with higher magnitude. For deeper networks, we also
explore the mixed precision technique to safeguard the accuracy of the network in lower precision,
where very few layers in the network have 8 bits precision weights and the remaining majority
of the layers in the network have 4 bits precision weights. We design configurable and scalable
neuron encoding and spike aggregation engines, which address the challenge of dynamic and
irregular access patterns due to the event-driven nature of SNNs and explore different combinations
of pipeline and parallelization techniques, as well as memory access optimizations. Also, to support
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different network and layer sizes on different FPGA devices, we use a hierarchical on-chip buffering
strategy. We also use memory coalescing and bursting to optimize the off-chip memory access.
Finally, we compare the hardware performance of SyncNN based SNNs with conventional CNNs
using Vitis AI [39] on the same Xilinx FPGA platforms.
Unlike prior FPGA studies [9, 12, 14, 23, 24] that only evaluated small networks such as MLP

and LeNet, we have evaluated SyncNN for various CNN-based networks including LeNet, Network
in Network (NiN) and VGG, for multiple datasets including MNIST, SVHN and CIFAR-10, on
multiple ARM-FPGA SoCs, including Xilinx ZedBoard, ZCU104 and ZCU102 boards. Compared to
state-of-the-art SNN acceleration work on FPGAs [9], for the same experimental setup—LeNet for
MNIST dataset, on Xilinx ZCU102 board—SyncNN achieves 13,086 frames per second, which is
6.16x faster than [9], and 99.3% accuracy, which is higher than 99.2% in [9].

In summary, this paper makes the following contributions:
• A novel synchronous event-driven SNN with quantitative comparison to asynchronous SNN
approaches.

• The first configurable and scalable FPGA engine of SNN that supports deep networks on mul-
tiple FPGA devices. The SyncNN framework is also open sourced at https://github.com/SFU-
HiAccel/SyncNN.

• The first 4-bit SNN on FPGAs (for LeNet) that achieves a very high accuracy of 99.6% for the
MNIST dataset.

• The first work that explores mixed precision quantization for SNNs (8 bits and 4 bits) which
has negligible drop in accuracy for deeper networks such as NiN and VGG.

• State-of-the-art SNN performance of 13,086 frames per second (FPS) for the MNIST dataset
(using LeNet).

• Comparison of SyncNN accuracy and performance with Vitis AI, which shows that SyncNN
opens up a door for CNN alternatives.

The remainder of this paper is organized as follows. Section 2 describes SNN background and
related work. Section 3 presents the SNN algorithm, limitations of asynchronous SNNs, and our
proposed synchronous SNN approach. Section 4 proves the accuracy of SyncNN and discusses its
hardware implementation advantage. Section 5 presents our hardware optimizations to implement
SyncNN on Xilinx ARM-FPGA SoCs. Section 6 evaluate the accuracy and performance of SyncNN
and compares it to state-of-the-art work. Finally, Section 7 concludes this paper.

2 SNN BACKGROUND AND RELATEDWORK
In this section, we will describe how SNNs work and their computing advantages, challenges and
advancements to improve SNN accuracy, and hardware acceleration techniques to improve SNN
performance. Finally, we will summarize the goal of our work.

2.1 How SNNs Work and Their Computing Advantages
SNNs [18, 26] are considered as the third generation neural networks and are well known for
their biological plausibility. They operate using spikes happening at discrete events, rather than
continuous values as in the case of widely used artificial and convolutional neural networks (ANNs
and CNNs). For example, in the widely used integrate-and-fire (IF) based SNN model, shown
in Figure 1, when an input spike comes into a neuron, the membrane potential of the neuron is
either increased or decreased based on the nature of the spike (excitatory or inhibitory). Once the
membrane potential crosses the threshold value, the neuron generates spikes to the connected
neurons in the next layer, and its membrane potential is reset. If the connection associated with
the spike has a positive weight, then it is an excitatory spike and the membrane potential of the
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Fig. 1. Overview of the SNN working mechanism

neuron is increased. Otherwise, if the connection associated with the spike has a negative weight,
it is an inhibitory spike which reduces the membrane potential of the neuron [26].
There are several models of SNNs, like the IF, leaky IF (LIF), spike response, Izhikevich, and

Hodgkin-Huxley models[25][5][7][37]. In this paper, we focus on the IF model: the membrane
potential is just added or subtracted by the weight of the connection in which there is an incoming
spike, and is reset immediately once it reaches the threshold value.

Event Driven Nature of SNNs. While conventional ANNs and CNNs have had a great success
in many areas such as handwriting recognition, image classification, speech recognition, and
automated control, they are very hardware hungry and pose great challenges for real-time inference
on edge devices. One of the major reasons is that, in ANNs and CNNs, all the neurons in a layer
are activated and all the information is passed from one layer to the next layer in a synchronous
fashion. In SNNs, unlike ANNs and CNNs, only the neurons whose membrane potential reached
the threshold are activated and pass spikes to their connected neurons in the next layer [18], shown
in Figure 1. This event-driven nature of SNNs greatly reduces the total number of computations and
data communications between layers in SNNs, since typically only a small fraction of the neurons
generate spikes at any given timestep.

Asynchronous Nature of SNNs. In fact, the neurons in SNNs are not activated layer by layer.
Shown in Figure 1, at one timestep, one set of neurons (with membrane potential reached the
threshold) are activated among different layers; at another timestep, a different set of neurons
among different layers are activated. Overall, at the end of the encoding window, there is a large
fraction of neurons that are not activated and computed. Therefore, by default, SNNs have an
asynchronous execution flow where all the layers in the network can execute in parallel.

In summary, theoretically, SNNs require fewer computation operations and data communications
than conventional ANNs and CNNs, and can achieve lower latencies due to their event-driven
computing and asynchronous nature. This makes SNNs a great candidate for real-time inference
on edge devices.

2.2 Challenges and Advancements for SNN Accuracy
The training mechanisms of SNNs are more computationally intensive and even training a shallow
SNN can take orders-of-magnitude more time than training a similar ANN or CNN.

In ANNs and CNNs, the gradient descent algorithm is widely used for training the network: the
errors, i.e., the difference between the network’s output and desired output, are back-propagated
and the network parameters are adjusted accordingly over multiple iterations. In SNNs, the same
method is more complex, since the training error is the difference in the spike timings of the actual
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and desired spike trains and it is quite unpredictable to achieve the desired output based on input
excitation. Many algorithms have been proposed to improve the training of SNNs.
Temporal Coding based Training. One of the earliest proposals was the SpikeProp algorithm
[2], which described the cost function in terms of the difference between desired and actual spike
times for a single spike. Later studies such as QuickProp[3] and RProp [20] have revised this rule
to incorporate learning with multiple spikes for better convergence speed. Other algorithms such
as the spike pattern association have their cost functions defined in terms of the difference in spike
trains converted to analog signals. The ReSuMe[27] and DL-ReSuMe[35] algorithm use local spike
timing dependent plasticity (STDP) rules [1] for weight update. However, temporal training of
SNNs is often more computationally intensive to achieve high accuracy and has been studied only
on shallow networks [31].
Conversion of CNNs to Rate-based SNNs. An alternative approach is to convert pre-trained
CNNs to spiking equivalents, which we use in our work as well. In the conversion technique, the
weights obtained from the trained CNNs, are mapped to a network of spiking IF units. And the
activation of neurons in CNNs is proportional to the firing rate of SNNs [4, 7, 13, 29]. Various
approaches were proposed to reduce the loss in the conversion such as setting the bias value to zero
and using ReLu as activation function so that the firing rate of SNNs does not go negative. Also,
weight normalization techniques and threshold balancing methods were helpful to decide the input
rate of the network and also observe almost lossless conversion from CNNs to SNNs [4, 7, 13, 29].
Recently, the conversion based SNN models have been studied on complex VGG and residual
networks [31] with high accuracy.
In this paper, we use the conversion technique and have applied the ReLu activation, weight

normalization, zero bias and other optimizations discussed in [7, 13, 29, 31] during the conversion.
Our main focus is on the SNN inference stage on edge devices.

2.3 Hardware Acceleration for SNN
As SNNs process the information in an event-driven nature, it is inefficient to implement them
on CPUs that process information in a synchronous manner. Also, the substantial computational
cost for implementing deep networks has created a need for specialized hardware acceleration. For
example, several studies have explored GPU implementations for SNNs and showed significant
speedup over CPUs [4, 11, 22].

Lots of efforts have been made to develop neuromorphic hardware for SNN simulation where the
communication of spikes is event-driven. BrainScaleS is the mixed signal SNN hardware designed
with 384 cores and supports up to 200K Neurons and 45M Synapses [30]. SpiNNaker is an ARM-
based processor platform optimized for the simulation of SNNs with up to 1M cores in 130nm CMOS
with each core supporting 1K neurons and 1K synapses [34]. The recent upgrade of SpiNNaker2 is
a 10M-core machine in 22nm FDSOI with additional numerical accelerators [19]. The TrueNorth
chip from IBM contains 4,096 cores supporting 1M neurons and 256M synapses [21].
Apart from the GPU and neuromorphic hardware implementations, FPGAs are also a very

attractive alternative especially for the SNN inference on edge devices, as they are commercially-
available hardware which can be customized for the SNN computation and provide low power
and high energy-efficiency. For example, in [28], a VHDL implementation for a simple pattern
recognition problem with temporal coding based SNN is explored. NeuroFlow [5] is another FPGA
accelerated SNN architecture for IF and Izhikevich models based on the STDP rule for learning. A
fully connected Izhikevich model of SNN for 1,440 neurons has been realized on Xilinx Virtex 6
device [25]. A LIF model of SNN to simulate 20 million to 2.6 billion neurons was realized with
Altera Stratix V FPGA [37]. A highly pipelined SNN model using HLS has been realized for 256
neurons which uses DSNN network and Hebbian learning mechanism [15].
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Implementation of rate based SNN inference on Xilinx ZC706 SoC FPGA board for MNIST image
clasification with LIF model has been studied with an accuracy of 97.06% and a performance of 161
frames per second [12]. Also, an another recent synthesizable Verilog implementation on Xilinx
ZCU102 SoC FPGA board for IF model for converted SNNs from ANN and CNN achieves 98.94%
accuracy with 164 frames per second at 150MHz clock frequency [14].

More recently, a temporal encoding based SNN inference on Xilinx ZCU102 SoC board for MNIST
image clasification achieves an accuracy of 99.2% and a simulation performance of 2,124 FPS [9]
at 125MHz. Also, the work compares its performance with Intel Loihi ASIC, Intel i9-9900K CPU,
Nvidia RTX 5000 GPU, and Nvidia AGX Xavier Edge GPU implementations.

2.4 Goal of This Work
The dynamic and event-driven nature of SNN operations makes it nontrivial to implement on
FPGAs, especially to implement a framework that can run various network models across a range
of embedded FPGA boards. One challenge is to resolve the data dependencies and parallelize the
computation. Another challenge is to buffer the large weight matrix on chip, where weights are
accessed randomly across all the neurons from layer to layer.

The goal of this paper is to design and implement a framework (called SyncNN) to address both
computation and memory access challenges to run any deep networks across a range of embedded
ARM-FPGA SoCs. Therefore, it can enable more evaluation and optimization of SNN inference
on edge devices. To the best of our knowledge, SyncNN is the first FPGA implementation of rate
based IF SNN inference to run deeper networks like NiN and VGG, especially designed in high-level
synthesis with all the computation and memory access optimizations studied in this paper. We
will present the quantitative comparison of our work and prior studies using GPUs, FPGAs, and
neuromorphic hardware in Section 6.6.

3 SYNCNN: SYNCHRONOUS SNN APPROACH
In this session, we highlight the challenges in the implementation of rate-based SNN on hardware
in asynchronous fashion, and propose a synchronous approach called SyncNN, which is more
hardware friendly and is scalabale to run any deeper network on a given Xilinx SoC FPGA board.

3.1 Rate Encoding based SNN Algorithm
Algorithm 1 presents an overview of the conventional rate encoding SNN algorithm based on the IF
model and Poisson spike generation [7]. For each input image, it iteratively calls the SPIKING_NET
function (lines 1-4) for a particular encoding window. The number of simulation steps (Sims), i.e.,
timesteps, is based on the network model and the input. As the encoding window increases, more
number of spikes are transmitted in the network. This SPIKING_NET function calls the following
three major functions (lines 5-12):
(1) Function POISSON_ENCODING (lines 13-18). The input nodes in the network are called Poissons

as they use Poisson random variables to convert the input amplitudes to a random spike train.
It takes the image (img*) as input and generates Poisson spikes (pSp*). These are activated
based on the pixel intensity of the image: a Poisson random variable is compared with the
pixel intensity, and based on the comparison, the Poisson unit is activated and it spikes. Let
the time taken to complete this function be PE.

(2) Function SPIKE_AGGREGATE (lines 19-25). The actual computation takes place here. Depending
on the layer of the network (convolutional, pooling or dense), we perform the aggregation
operation of weights to the membrane potential (Vm*) of the neuron. While ANNs/CNNs
perform operation for all the inputs, SNNs compute only for the encoded spiked inputs

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: August 2022.



SyncNN: Evaluating and Accelerating Spiking Neural Networks on FPGAs 1:7

Algorithm 1 Pseudo code for conventional rate-based SNN
1: function main
2: for each image do
3: for each simulation step do
4: SPIKING_NET(img*)
5: function SPIKING_NET(img*)
6: #Encodes input Poisson spikes: pSp*
7: POISSON_ENCODING(img*,pSp*)
8: for each layer in network do
9: #Update membrane potential: Vm*
10: SPIKE_AGGREGATE(weights*,pSp*,nSp*,Vm*)
11: #Encodes neuron spikes: nSp*
12: NEURON_ENCODING(Vm*,nSp*)
13: function POISSON_ENCODING(img*,pSp*)
14: pSpiked = 0 #Reset counter for Poisson spikes
15: for each image pixel do
16: if pixelValue > PoissonThreshold then
17: pSp[pSpiked] = pixelIndex
18: pSpiked++
19: function SPIKE_AGGREGATE(weights*,pSp*,nSp*,Vm*)
20: #Convolutional, Pooling or Dense
21: for each spiked inputs in psp*/nsp* do
22: for each weight w in the kernel do
23: for each number of feature maps o do
24: #Performs the aggregation operation
25: Vm[o] += weights[w]
26: function NEURON_ENCODING(Vm*,nSp*)
27: nSpiked = 0 #Reset counter for neuron spikes
28: for each neuron n do
29: if Vm[n] > VmThreshold then
30: nSp[nSpiked] = n
31: Vm[n] -= VmThreshold
32: nSpiked++

(Poisson Spikes - pSp*, Neuron Spikes - nSp*) in that simulation step, which is the key
advantage of SNNs. Let the time taken to complete this function for the 𝑙𝑡ℎ layer be SA[l].

(3) Function NEURON_ENCODING (lines 26-32). It takes the aggregated membrane potential as
inputs (Vm*), and generates neuron spikes (nSp*). As shown in Figure 1, the membrane
potential (Vm*) of the neuron is updated based on the spikes it receives, and once it reaches
the threshold value, the neuron is activated with a spike and the membrane potential is set
back to Vreset. Let the time taken to complete this function for the 𝑙𝑡ℎ layer be NE[l].

The SPIKE_AGGREGATE function takes the encoded spiked inputs generated in the NEURON_ENCODING
function as input and calculates the membrane potentials of neurons for the NEURON_ENCODING
function in the next layer. This process is repeated for all the layers (NL) in the network. When this
algorithm is implemented in a naive synchronous fashion, the time it takes to classify one image is:

𝑇𝑛𝑎𝑖𝑣𝑒_𝑠𝑦𝑛𝑐 = 𝑆𝑖𝑚𝑠 ∗ (𝑃𝐸 +
𝑁𝐿∑
𝑙=1

(𝑁𝐸 [𝑙] + 𝑆𝐴[𝑙])) (1)
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3.2 Asynchronous Approach of SNNs
One of the attractive features for SNNs is their asynchronous execution flow. If there is enough
hardware resource, all the layers in the network can be computed concurrently in a pipeline fashion.
The pipeline throughput is determined by the layer that takes the most of the time at that simulation
step. Within the three major functions of SNNs, the SPIKE_AGGREGATE function at any simulation
step is the most time consuming one. Therefore, the time it takes to classify one image is:

𝑇𝑎𝑠𝑦𝑛𝑐 =

𝑆𝑖𝑚𝑠∑
𝑠=1

max(𝑆𝐴𝑠 [1], 𝑆𝐴𝑠 [2], ..., 𝑆𝐴𝑠 [𝑁𝐿]) (2)

However, the asynchronous approach faces several challenges when accelerated on edge devices.
(1) Network size limitation. In order to run all the layers in parallel, the network parameters

(inputs, weights, and outputs) have to be on-chip independently for every layer. Also, com-
puting resources have to be allocated for all the layers. For edge devices, which has limited
resources, it is difficult to implement larger networks in the asynchronous fashion.

(2) Resource underutilization. The SPIKE_AGGREGATE function has the highest workload
compared to the other functions. In the asynchronous approach, the overall processing
time in a simulation step highly depends on the computation unit of the layer that has the
longest latency. Therefore, all the resources for other functions have to remain idle until the
slowest function finishes. Moreover, since all the layers are implemented on the hardware,
the optimizations within each layer is also restricted due to limited resource.

(3) Impact of encoding window. For the asynchronous approach, all the layers in the network
still run for multiple simulation steps. For small networks like LeNet and MLP, the encoding
window is very small to achieve a good accuracy. However, for larger networks like NiN and
VGG, the encoding window is very large to achieve a good accuracy as shown in Section 6.2.
Based on Equation 2, the large encoding window (𝑆𝑖𝑚𝑠) limits the performance.

3.3 SyncNN: Synchronous Approach of SNN Acceleration
To address the above challenges, we propose a novel synchronous approach, called SyncNN, to
accelerate rate encoding SNNs on hardware. Unlike previous approaches, we do not run the
entire network for multiple simulation steps. Only the input layer, i.e., the POISSON_ENCODING
function, is run for multiple simulation steps. For the remaining layers, the SPIKE_AGGREGATE and
NEURON_ENCODING functions are run only once for each layer in the network and all spikes are
aggregated (increment to the membrane potential) together. Therefore, the size of the encoding
windowhas no effect on the performance of the SPIKE_AGGREGATE and NEURON_ENCODING functions.
For example, if the aggregated membrane potential value of a neuron is twice the value of the
threshold, we consider that the neuron needs to spike twice. The key is that instead of spiking
a neuron at multiple timesteps (e.g., timestep 1 and 4), SyncNN only spikes a neuron at the final
timestep (and only one timestep) and spikes it with the equivalent number of times. Due to the
synchronous layer-by-layer execution, this is equivalent to the original SNNwithmultiple timesteps;
a mathematical proof will be provided in Section 4.1. SyncNN still preserves the event-driven feature
of SNN as only those neurons whose membrane potential exceeds the threshold will be activated
and computed. The time it takes to classify one image is:

𝑇𝑆𝑦𝑛𝑐𝑁𝑁 = (𝑆𝑖𝑚𝑠 ∗ 𝑃𝐸) +
𝑁𝐿∑
𝑙=1

(𝑁𝐸 [𝑙] + 𝑆𝐴[𝑙])) (3)
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Fig. 2. Neuron encoding method in SyncNN

3.4 Neuron Encoding in SyncNN
Themost commonly used neuron encoding technique is the binary encoding (as shown in Figure 2.a),
where𝑁𝑖 is used to represent the number of spikes for the activated neuron and 0 is used for neurons
that are not activated. Only the neurons that are activated are actually needed for computation.
The downside of the binary encoding is that all neurons are now used in the computation. To
fully exploit the effectiveness of the event-driven nature, we record only the activated neurons by
encoding the position of the activated neuron and its associated number of spikes, and the total
number of activated neurons. This encoding for SyncNN is shown in Figure 2.b.

4 WHEN TO USE SYNCNN
In this section, we will first prove that mathematically, our SyncNN is equivalent to the conven-
tional asynchronous SNN and achieves the same accuracy. Then we will compare its required
computational operations to conventional CNNs and asynchronous SNNs and discuss its advantage
in hardware implementation.

4.1 Accuracy Comparison with Asynchronous Approach
First, we prove that our proposed SyncNN approach is mathematically the same as the asynchronous
SNN approach and can reach the same accuracy for any given network. We know that, the Poisson
Encoding (PE), Spike Aggregate (SA) and Neuron Encoding (NE) functions are the three major
functions in SNNs. Let us compare the operations in each function individually.

Poisson Encoding. In both SyncNN and asynchronous approaches, the image pixel intensity
is compared with the Poisson threshold. Based on the comparison, the neuron, corresponding to
the pixel intensity of the image, is encoded with a spike. The only difference between the two
approaches is, in SyncNN, we repeat the Poisson Encoding function for all the simulation steps
(Sims) and encode all the spikes together. Therefore, for any neuron, the total number of spikes in
Sync.PE is equal to the spikes produced in Asynch.PE for that neuron after all the simulation steps.

For the encoded neuron n in the PE function,

𝑆𝑦𝑛𝑐𝑁𝑁 .𝑃𝐸𝑛 ==

𝑆𝑖𝑚𝑠∑
𝑠=1

(𝐴𝑠𝑦𝑛𝑐.𝑃𝐸𝑠𝑛) (4)

Spike Aggregate. For the layer that is immediately after the input layer, the neurons encoded
in the Poisson Encoding function is now the event-driven input to the Spike Aggregate function.
The Spike Aggregate (SA) function can be Convolutional, Pooling or Dense layer depending on the
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network. The network topology is the same for both the asynchronous and SyncNN approaches.
Let us consider a dense layer for both the cases. A similar proof can also be applied to other layers.

In the dense layer (i.e., fully connected layer), assume the total number of encoded neurons (i.e.,
spiked neurons) in the current layer is EN and the number of neurons in the next layer is M. Each
encoded neuron i in the current layer connects to all M neurons in the next layer, i.e., the spikes
are passed from neuron i to each neuron j in the next layer. Let w be the weight associated between
i and j. Then the output for neuron j in the next layer is evaluated as the following.

For SyncNN based SNNs:

𝑆𝑦𝑛𝑐.𝑆𝐴 𝑗 =

𝐸𝑁∑
𝑖=1

𝑆𝑦𝑛𝑐.𝑃𝐸𝑖 ∗𝑤𝑖 𝑗 (5)

For asynchronous based SNNs at any simulation step ’s’:

𝐴𝑠𝑦𝑛𝑐.𝑆𝐴𝑠
𝑗 =

𝐸𝑁∑
𝑖=1

𝐴𝑠𝑦𝑛𝑐.𝑃𝐸𝑠𝑖 ∗𝑤𝑖 𝑗 (6)

With SyncNN approach, the effect of Poisson Encoding for all the simulation steps (Sims) is
accounted together and the Spike Aggregate function for any layer is executed only once. But in
Async. approach, the Spike Aggregate function for any layer is repeated for Sims number of times.
Therefore, the output for neuron j at the end of all simulation steps is:

𝑆𝑖𝑚𝑠∑
𝑠=1

𝐴𝑠𝑦𝑛𝑐.𝑆𝐴𝑠
𝑗 =

𝑆𝑖𝑚𝑠∑
𝑠=1

𝐸𝑁∑
𝑖=1

𝐴𝑠𝑦𝑛𝑐.𝑃𝐸𝑠𝑖 ∗𝑤𝑖 𝑗 (𝑓 𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6)

=

𝐸𝑁∑
𝑖=1

𝑆𝑖𝑚𝑠∑
𝑠=1

𝐴𝑠𝑦𝑛𝑐.𝑃𝐸𝑠𝑖 ∗𝑤𝑖 𝑗

=

𝐸𝑁∑
𝑖=1

(
𝑆𝑖𝑚𝑠∑
𝑠=1

𝐴𝑠𝑦𝑛𝑐.𝑃𝐸𝑠𝑖

)
∗𝑤𝑖 𝑗

=

𝐸𝑁∑
𝑖=1

𝑆𝑦𝑛𝑐.𝑃𝐸𝑖 ∗𝑤𝑖 𝑗 (𝑓 𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4)

Therefore, for any output neuron j,

𝑆𝑦𝑛𝑐.𝑆𝐴 𝑗 ==

𝑆𝑖𝑚𝑠∑
𝑠=1

𝐴𝑠𝑦𝑛𝑐.𝑆𝐴𝑠
𝑗 (7)

Thus, it is proved that the effect of Spike Aggregate function for any encoded neuron in SyncNN is
the same as the effect of Spike Aggregate function for the same encoded neuron in the asynchronous
approach at the end of all the simulation steps.

Neuron Encoding. The output of the Spike Aggregate function is taken as input for Neuron
Encoding function. For every neuron in the layer, we check whether the input is greater than
threshold (voltage) Vth. In the asynchronous approach, shown in lines 2-6 in Algorithm 2, at any
simulation step, if the condition passes, we encode the neuron with 1 and reset the Spike Aggregate
output by subtracting it by Vth. Whereas, in SyncNN, if the condition passes, we measure the
output of the Neuron Encoding as a total number of Vth present in the Spike Aggregate output,
shown in lines 9-10 in Algorithm 2. By this way, we account all the spikes present in any neuron
across all the simulation steps in one shot. Mathematically, we can rewrite the Neuron Encoding
function for both the SyncNN approach as shown in lines 12-16 in Algorithm 2.
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Algorithm 2 Pseudo code for Neuron Encoding
1: In Asynchronous Approach:
2: for each neuron ‘n’ in Layer do
3: for each simulation step ‘s’ in Sims do
4: if Async.SA[n]>VmThreshold then
5: Async.NE[n][s] = 1
6: Async.SA[n] -= VmThreshold
7: In SyncNN:
8: for each neuron ‘n’ in Layer do
9: if Sync.SA[n]>VmThreshold then
10: Sync.NE[n] = int (Sync.SA[n]/VmThreshold)
11: SyncNN can be re-written as:
12: for each neuron ‘n’ in Layer do
13: while Sync.SA[n]>0 do
14: if Sync.SA[n]>VmThreshold then
15: Sync.NE[n] += 1
16: Sync.SA[n] -= VmThreshold

Since we proved that 𝐴𝑠𝑦𝑛𝑐.𝑆𝐴[𝑛] == 𝑆𝑦𝑛𝑐.𝑆𝐴[𝑛], we can conclude that the condition in
asynchronous approach (line 4 in Algorithm 2) and the condition in SyncNN approach (line 14 in
Algorithm 2) will be triggered the same number of times. Therefore, we can come to a conclusion
that, for any neuron n,

𝑆𝑦𝑛𝑐.𝑁𝐸𝑛 ==

𝑆𝑖𝑚𝑠∑
𝑠=1

𝐴𝑠𝑦𝑛𝑐.𝑁𝐸𝑠𝑛 (8)

Therefore, from Equations 4, 7, and 8, we prove that, the proposed approach SyncNN is math-
ematically the same and will achieve the same accuracy as the conventional asynchronous SNN
over the effect of all the simulation steps.

4.2 Hardware Perspective
From the hardware perspective, since a network is executed layer by layer in SyncNN, the computing
and memory resources can be reused between layers through time multiplexing. Hence, any deep
networks can be implemented and the slowest function will not cause resource underutilization for
other functions. Also, the encoding window only affects the performance of the input layer, i.e., the
POISSON_ENCODING function, where parallelism can be explored among multiple timesteps.

5 HARDWARE DESIGN OF SYNCNN FRAMEWORK
The computation and memory access pattern of SNNs is irregular, because of their event-driven
nature. In this section, we discuss the computation and memory-access optimization techniques
implemented in SyncNN to address this challenge.

5.1 Quantization
To improve the computing and memory access efficiency of SyncNN, we first apply SNN friendly
quantization to represent the weights in low precision fixed-point values. In SNN, after training the
CNN network, the weights are normalised between -1 to 1. Therefore, we just need two bits in the
integer portion (one for the value of 0 or 1, and the other for the sign bit). In all our experiments
(for a wide range of networks and datasets), the remaining 14 bits are enough to represent the
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trained weights without any quantization technique involved. For 8 bits and 4 bits, it needs some
special quantization to represent the trained weights to reserve the accuracy.
Max scaling and rounding. In SNNs, the weights with high magnitude have more impact on
altering the membrane potential of the layer. Hence, priority is given to represent those high
magnitude weights for the number of bits chosen. The weight with the maximum magnitude in a
layer is represented by the maximum possible fixed point representation for the number of bits
chosen. For example, the maximum possible absolute value in fixed point representation for 8
bits and 4 bits with 2 bits allocated for the integer portion (along with sign) is 1.984375 and 1.75
respectively, and let us call it as max_fixed_point. Let the absolute max weight in the layer be
max_weight. Now, we decide the scaling factor scale based on this representation.

max_weight ∗ scale = max_fixed_point (9)

From the obtained scaling factor scale, we multiply all the weights with scale and then round it
to the nearest fixed point representation. The threshold potential of the layer is also multiplied
with the same scaling factor in order to maintain uniform number of spikes in the network.
Percentile-based scaling with clipping and rounding. After analyzing the distribution of the
weights in a layer, we find that very few weights have large magnitudes and the majority of the
weights are small. Deciding the scaling factor scale based on the maximum value prevents us from
accurately representing the majority of small weights with a non-zero fixed point representation,
especially for 4-bit representation. Therefore, based on the weight distribution of the layer, we
choose the X-th percentile (e.g., 99-th percentile) of the weight and represent that weight with the
maximum possible fixed point representation for the number of bits chosen (max_fixed_point).
Now, we can decide the scaling factor scale based on the following equation:

Xth_percentile_weight ∗ scale = max_fixed_point (10)

We then multiply all the weights with the obtained scaling factor (𝑠𝑐𝑎𝑙𝑒) and round it to the
nearest fixed point value. For the values whose magnitude is greater than the max_fixed_point, we
clip it to the max_fixed_point.

The above two approaches—max scaling and rounding and percentile-based scaling with clipping
and rounding—work good for 8 bits with negligible accuracy drop. And for 4 bits, the later approach
works good for smaller networks like LeNet with negligible drop in accuracy, while the prior
approach does not. But for larger networks like NiN and VGG, both the approaches result in
significant accuracy drop. Figure 9 in Section 6.4 presents more detailed accuracy results for various
networks for the percentile-based scaling with clipping and rounding quantization that we adopt.
Mixed Precision. To further improve the accuracy of deeper networks like NiN and VGG, we use
the Mixed Precision quantization. In this approach, we use some layers at 8 bits and the remaining
layers at 4 bits. In particular, we observe that, having the first few layers and the last few layers as
8 bits and all the remaining layers as 4 bits help achieve very little drop in accuracy. This decision
was concluded after running several experiments. We started with randomly choosing few layers
with 8-bit and the rest with 4-bit. But, from the experiments, the first few layers carry the most
important information and it is very essential to dedicate some more bits for those layers. And the
final layer is going to predict the classification output. Therefore, having the last layer with 8-bits
also has a great impact in improving the performance.

Note that, we still use the previous percentile-based scaling with clipping and rounding approach
to quantize the layers, but just that we use different precisions for different layers in the network. In
Section 6.4, we will present the improvement in accuracy for deeper networks with Mixed Precision
approach.
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Fig. 3. Hardware architecture of Poisson and neuron encoding units in SyncNN

5.2 Computation Optimization
In SyncNN, we design configurable and scalable compute engines for all major functions with
pipeline and parallelization techniques, which can be deployed on different Xilinx FPGA boards
based on the available memory and computing resources.
POISSON_ENCODING. In SyncNN, as shown in Figue 3, all the input nodes (i.e., image pixels)
in the POISSON_ENCODING function is run for multiple simulation steps Sims. We partially unroll
(parallelize) the simulation step loop with a factor of USims, and pipeline the outer loop with
pipeline initiation interval as 1 (II=1). The output of this function is the encoded spikes only for the
activated neurons in the input layer.
NEURON_ENCODING. First, as shown in Figue 3, we parallelize the neuron encoding for each
input feature map of a layer by partially unrolling the input feature map loop with a factor of
EMaps. Inside each feature map, we pipeline the neural encoding of each neuron with II=1. The
output of this function is the encoded spikes only for the activated neurons in that layer. If it is the
final layer, it gives the classification output.
For those activated neurons, we encode their original neuron index and aggregated number

of spikes in a pair of arrays (𝑆𝑝𝑖𝑘𝑒_𝑖𝑛𝑑𝑒𝑥 and 𝑆𝑝𝑖𝑘𝑒_𝑐𝑜𝑢𝑛𝑡 ); we also record the total number of
spiked neurons (#𝑆𝑝𝑖𝑘𝑒_𝑛𝑒𝑢𝑟𝑜𝑛𝑠). While such encoding reduces the total number of computations
as only activated neurons are encoded and computed, it also creates the dynamic and irregular
access pattern challenge.
SPIKE_AGGREGATE. The topology of the function depends on the layer of the network. In
SyncNN, we implement the widely used CNN computational units such as Convolutional, Pooling,
Dense and Global Average Pooling. The major difference between the conventional CNNs and
SyncNN based SNNs is the inputs presented to every layer. In SyncNNs, as shown in Figue 4, only the
spiked neurons (random and event-driven) in the previous layer (output from the NEURON_ENCODING
or POISSON_ENCODING function) are presented as inputs for the current layer. That is, the output
of this function is now dependent on the randomly spiked inputs, which makes parallelization
challenging.

(1) Convolutional unit. The CONV_SPIKE_AGG function in Figure 4 shows the convolutional
unit implementation, which is the most important and complex one. We first design a basic
convolutional unit called ConvPE to process each input feature map. Inside the ConvPE, since
the output feature map loop (OMaps) has no dependency, we swap it in as the innermost
loop and parallelize it by partially unrolling it with a factor of UOMaps. Then we pipeline the
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Fig. 4. Hardware architecture of spike aggregation units in SyncNN, including convolutional layer
(CONV_SPIKE_AGG), fully connected layer (FC_SPIKE_AGG), and pooling layer (POOL_SPIKE_AGG).

rest of the loop nests (kernel loops, and encoded spikes loop) with II=1. Between the input
maps (IMaps), there is a data dependency on the output membrane potential array (Vm), since
multiple neurons from the previous layer can generate input spikes to the same neuron in the
current layer and hence cannot be parallelised easily. In SyncNN, we allocate duplicate copies
(UIMaps) of the output Vm array (local_Vm) for each group of parallelly accessed input maps
to enable parallel processing. Finally, we add a global merging module to aggregate all the
local_Vm copies to produce the final updated output membrane potential array Vm. UIMaps is
the parameterized factor for parallelizing along the input maps, and UIMaps number of local
copies are needed to temporally store the output results which is later aggregated together.

(2) Pooling unit. For a pooling layer, the number of output feature maps equals to the number
of input feature maps for any spiked inputs. Therefore, the number of maps in the layer
remains definite even though the spiked inputs for every map is decided in the run time.
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Fig. 5. Different granularity to load kernel depending on the size of the weights and available on-chip memory

Hence, we design a POOL_SPIKE_AGG function as shown in Figure 4, where we have PoolPE
engine for each map and partially unroll the input feature map loop with a factor of UPMaps.
Inside the PoolPE, we pipeline the loop (spiked_inputs) with II=2. We cannot achieve II=1
because of the data dependency of the output caused between randomly encoded spiked
inputs (the index to update OutputVm is an indirect variation of the spiked neuron index s).

(3) Dense unit. The FC_SPIKE_AGG function in Figure 4 shows the fully connected dense unit
implementation. For dense layers, for any spiked input, all the neurons in the layer are
aggregated. For a dense layer of size DLayer, we parallelize the FcOp units with a unroll factor
of UDLayer. At each FcOp unit, we accumulate the membrane potential with the weight and
the spike count. Then for the remaining loop nest (spiked inputs and DLayer/UDLayer), we
pipeline it with II=1.

5.3 Memory Access Optimization
The aforementioned event-driven nature of SNNs makes the weight access irregular and it is critical
to buffer the weights on chip. In this session, we discuss the various memory access optimizations
that are explored in SyncNN.
Hierarchical on-chip buffering. The encoded spikes that act as input to the layer and the
membrane potential that is the aggregated output of the layer are relatively small and can be
buffered on-chip and reused between the different layers in the network. The biggest challenge is
to buffer the randomly accessed network weights on-chip.
In SyncNN, we use a hierarchical on-chip buffering technique to buffer as many weights as

possible, depending on the network size and the on-chip memory size available on the FPGA board.
We load the weights in a coalesced (widened bus) and burst fashion [17, 40] from the off-chip
memory to on-chip memory at different granularity. As shown in Figure 5, for every convolutional
layer, the weights are resolved in four dimensions. As we go down in the granularity, more weights
have to be accessed from off-chip memory which impacts the performance of the network.

(1) Level 1: If the FPGA board can load the weights corresponding to all the layers in the neural
network, the weights are prefetched at network level and therefore the entire off-chip access
for the network is done only once. This is the best case scenario for loading the network
weights and is often possible for smaller networks.

(2) Level 2: For bigger networks or smaller FPGA boards, where we cannot load all the weights
on-chip, we load them layer-wise so that the weights buffer can be reused for every layer in
network.

(3) Level 3: For very big networks (like NiN, VGG) or very small FPGA boards, it is not possible
to load even one layer’s weight on-chip. In this case, we go one step further in granularity
and load the weights for every map of the layer and perform the computation for that map.
For the next map, we again load the weights from off-chip.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: August 2022.



1:16 Sathish Panchapakesan, Zhenman Fang, and Jian Li

Algorithm 3 Deciding which granularity level to buffer weights for convolutional lalyers

Input: A SNN network, with the total size of weights:𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑡𝑜𝑡𝑎𝑙 , the maximum size of weights
available in any given layer:𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 , the maximum size of weights available in any
feature map of a given layer:𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑚𝑎𝑥_𝐹𝑀 , the total size of activations: 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠_𝑡𝑜𝑡𝑎𝑙 ;
and an FPGA board with the total available resource on-chip buffer size: 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑡𝑜𝑡𝑎𝑙

Output: The granularity level to buffer the weights for convolutional lalyers
1: 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑎𝑣𝑎𝑖𝑙 = 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑡𝑜𝑡𝑎𝑙 - 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠_𝑡𝑜𝑡𝑎𝑙
2: if 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑎𝑣𝑎𝑖𝑙 > 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑡𝑜𝑡𝑎𝑙 then
3: return Level 1
4: else if 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑎𝑣𝑎𝑖𝑙 > 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 then
5: return Level 2
6: else if 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑎𝑣𝑎𝑖𝑙 > 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑚𝑎𝑥_𝐹𝑀 then
7: return Level 3

More specifically, Algorithm 3 formulates the steps to decide which level of buffering to choose
for a given network on a given FPGA board. As shown in Table 1, different networks uses different
granularity levels for a given FPGA platform. Detailed experimental setup about the network
configuration and FPGA boards is explained in Section 6.1.

Table 1. Different granularity levels for different networks and FPGA platforms

Network/Platform ZED ZCU104 ZCU102
LeNet-S Level 2 Level 1 Level 1
LeNet-L Level 2 Level 1 Level 1
NiN Level 3 Level 2 Level 2
VGG Level 3 Level 3 Level 2

For dense layers, we prefetch and store the maximum number of rows in the weight matrix that
can be buffered on-chip. If the spiked input can access the weights from the prefetched weight
matrix, it directly reads them from on-chip buffer. Otherwise, that row containing the required
weights will be loaded from the off-chip memory.

6 EXPERIMENTAL RESULTS
In this section, we describe our experimental setup and present our experimental results. We will
first present the SNN accuracy results, including the impact of encoding window size, CNN-SNN
conversion and quantization techniques. Then we will present the SyncNN performance results,
and compare it with recent work in SNN acceleration and conventional CNN acceleration.

6.1 Experimental Setup
The network configurations for each network is summarized in Table 2. nCs denotes the convolu-
tional layer with kernel size s*s and n is the number of kernels, Ps denotes the pooling layer with
size s*s and GAP denotes Global Average Pooling Layer, and a pure number n denotes the dense
layer with n neurons. The first LeNet network Lenet-S is the same network configuration used in
[9]. The second LeNet network Lenet-L is comparatively larger than Lenet-S, where it is difficult to
hold all the network parameters on-chip, but has better accuracy. Two deeper networks, Network
in Network (NiN) and VGG, are also evaluated. Three widely used image classification datasets are
evaluated in SyncNN: MNIST, SVHN and CIFAR-10.
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Table 2. Neural network configurations

Network Configuration
Lenet-S Input-32C3-P2-32C3-P2-256-Output
Lenet-L Input-32C5-P2-64C5-P2-2048-Output

NiN Input-(192C5-192C1-192C1-P3)*2
-192C5-192C1-10C1-GAP-Output

VGG
Input-(64C3-64C3-P2)-(128C3-128C3-P2)
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-256-256-Output
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Fig. 6. Impact of encoding window on the accuracy for MNIST dataset

The MNIST dataset is tested for Lenet-S and Lenet-L networks. SVHN dataset is tested for Lenet-S
and VGG networks. And CIFAR-10 is tested for NiN and VGG networks. Our SyncNN framework
is built using Xilinx SDSoC 2019.1 that integrates Vivado HLS C++. Vivado HLS allows a user to
code the hardware with C or C++ and supports pragmas to optimize the hardware. In SyncNN,
HLS techniques such as pipelining, fine-grained and coarse-grained unrolling (i.e. parallelization),
coalesced (widened bus), burst off-chip memory access, and hierarchical on-chip buffering are
explored. Three different Xilinx SoC boards are used to test the SyncNN framework: Xilinx Zynq
ZedBoard, Zynq UltraScale+ ZCU104 and ZCU102 boards. The main difference between the boards
is the available resources: ZCU102 > ZCU104 > ZedBoard. For SNN, as per the SyncNN framework,
the performance between the boards vary because of the difference in the available resources
between the boards. Our designs run at 100MHz on ZedBoard, 150MHz on ZCU104, and 200MHz
on ZCU102. Further increasing the frequency does not meet timing and the critical path is in the
memory control signals and not related to the HLS kernel code.

6.2 Impact of Encoding Window
The encoding window (Sims) for a network is dependent on the depth of the network used and the
input presented to the network. As the encoding window increases, the network transmits more
spikes to predict the output more accurately. For MNIST dataset with smaller networks, as shown
in Figure 6, the encoding window required to achieve a good accuracy is relatively small. Shrestha
et al. [33] achieve 97.3% accuracy for 200 Sims. Tavanaei et al. achieve [36] 97.2% at 50 Sims. Wu et
al. [38] achieve 98.89% accuracy for 30 Sims. Shrestha et al. [32] achieve 99.3% accuracy for 20 Sims.
More recently, Fang et al. [9] achieves 99.01% at 7 Sims with a peak accuracy of 99.43%. Our work,
SyncNN achieves better accuracy of 99.17% for the same 7 Sims and achieves a peak accuracy of
99.63% with 100 Sims, which is more accurate than all prior FPGA implementations. After 100 Sims,
the accuracy saturates and remains the same.
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For CIFAR-10 dataset, with larger networks like NiN and VGG, as shown in Figure 7, the required
encoding window is very large to transmit the needed spikes in the network. In our SyncNN
approach, the NiN achieves 88.1% accuracy and the VGG-13 network achieves 91.19% accuracy at
1,800 Sims. The recent study by Sengupta et al. [31], which explores converted SNNs on deeper
networks, also confirms the need for a larger encoding window. Their work achieves 91.55%
accuracy at 2,500 Sims with the VGG-16 network.

6.3 Computational Comparison for SyncNN
Finally, we compare the number of computing operations required in the conventional CNNs,
asynchronous SNNs, and our SyncNNs in Figure 8. The detailed experimental setup will be explained
in Section 6.1. Note that for asynchronous SNNs, we assumed an ideal case where all layers can
execute in parallel and we only counted the computing operations in the largest layer. For CNNs
and SyncNN based SNNs, we counted all computing operations in all layers since they execute layer
by layer. Our SyncNN approach has a significant advantage over asynchronous SNNs, especially for
deep networks (NiN and VGG) that require a large encoding window, since SyncNN requires only
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Fig. 9. Inference accuracy comparison of CNN and SyncNN based SNNs with different data precision

one timestep for all layers except the input layer. For CNNs, we do a theoretical estimate for the
number of computations needed. This is feasible because, in CNNs, all the neurons are activated and
computed. In the case of SyncNN and asynchronous SNNs, since they adapt the event-driven nature,
we pass the input-set to estimate the total number of activated neurons in each layer and evaluate
the number of computations needed. Also, within the same dataset, between different input images
presented, the number of activated neurons varies. Therefore, we take an average value for the
total number of neurons activated for the entire dataset and measure the results. Compared to
conventional CNNs, our SyncNN based event-driven SNNs can reduce the number of computing
operations by 4.67x to 14.47x. The savings in computation has direct relation to the storage needed.
The total storage required can be categorized as two parts. One is the storage required for the
network weights. Between SyncNN, asynchronous SNNs and equivalent CNN, the storage needed
for the weights remain the same. The other is the storage required for the activations. In SyncNN, as
discussed in Figure 8, we require reduced number of activations (computations), compared to both
conventional CNNs and asynchronous SNN. In SyncNN, only a fraction of neurons are encoded
and activated. Also, unlike the asynchronous SNNs, SyncNN does not run the entire network for
multiple simulation steps and the encoding window is confined only to the Poisson Encoding stage.
Therefore, the encoding window does not affect the storage needed and SyncNN would have a
great savings over the equivalent CNN and asynchronous SNNs.

6.4 Accuracy of SyncNN withQuantization
In conversion based SNNs, the accuracy of the SNN network is dependent on the underlying
CNN accuracy. The better we train the CNN model, the higher SNN accuracy is achieved. During
the CNN training phase, we use data normalization, augmentation, regularization and dropout
techniques [7, 13, 29, 31] to improve the accuracy of the network. We do not use batch normalization
during training, which is an important CNN optimization, because it negatively affects the SNN
accuracy after conversion. As summarized in Figure 9, the accuracy loss from converting CNN to
SNN is negligible. When the compute units are offload to hardware, there is no drop in accuracy
with 32 and 16 bits representation. For the LeNet networks there is negligible drop in accuracy for
8 and 4 bits representations. For NiN and VGG networks, there is negligible drop for 8 bits, but big
drop for 4 bits. Therefore, we use 4 bits for LeNet networks and 8 bits for NiN and VGG networks
in SyncNN hardware evaluation.

To further improve the accuracy for deeper networks like NiN and VGG at lower precision, we
use the Mixed Precision technique as discussed in Section 5.1, where the first and/or last few layers
of the network uses 8 bits weight precision and the remaining majority of the layers uses 4 bits
weight precision. In Figure 10, we compare the SyncNN accuracy for NiN and VGG networks under
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Fig. 11. Frames per second (FPS) for different networks and datasets running on different FPGA boards

1) pure 8-bit quantization, 2) pure 4-bit quantization, and 3) mixed 8-bit and 4-bit quantization,
where the percentage of 8-bit weights is gradually increased until it reaches a similar accuracy to
that of the pure 8-bit quantization. For NiN network with CIFAR-10 dataset, as shown in Figure 10a,
with just 4.4% of the total weights in 8 bits precision and remaining with 4 bits, we achieve 87.89%
accuracy, which is close to the accuracy of 88.09% using pure 8-bit quantization. And for VGG
network with CIFAR-10 dataset, as shown in Figure 10b, with just 5.8% of the total weights in 8 bits
precision and remaining with 4 bits, we achieve 90.98% accuracy, which is close to the accuracy of
91.15% using pure 8-bit quantization.

6.5 Overall Performance
Figure 11 shows the overall performance of each network with the best configuration on each FPGA
board (configuration parameters are presented in Section 5.2). The performance of the networks
varies between FPGA boards because of the difference between resources available. ZCU102 has
the best performance as it is the board having the maximum resources and ZED board has the least
performance since it is a very small FPGA board. The ZCU102 board is about 1.46x to 8.4x faster
than the ZCU104 board and 26.7x to 60.9x faster than the ZED board for various networks.
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On the ZCU102 board, the MNIST dataset for the Lenet-S network achieves a maximum of
13,086 FPS (frames per second) whereas it can achieve 1,629 FPS for the Lenet-L network. The huge
difference in the performance is because, it is not possible to prefetch all the network parameters
on chip for the Lenet-L network, especially because of its much larger dense layer. Therefore, more
off-chip access is involved in Lenet-L which downgrades the performance of network. The SVHN
dataset achieves a maximum of 3,695 FPS for the LeNet-S network and 65 FPS for the VGG network.
The CIFAR-10 dataset achieves a maximum of 147 FPS for NiN network and 62 FPS for the VGG
network.

For all the networks, their parameterized configuration and on-chip buffering is allocated in such
a way to not use more than 80% of the computing and memory resources available in the board.
For the MNIST dataset, we also present the performance/resource information in the Table 3.

6.6 Comparison with Related Work in SNN Acceleration
Most of the related studies are evaluated on the MNIST dataset with MLP or smaller CNN networks
like LeNet. Table 3 summarizes all the recent related work of SNNs on FPGAs and neuromorphic
hardware for the MNIST dataset, including the platform, frequency, training method, data precision,
network model, inference accuracy, frames per second (FPS), FPS per DSP usage, FPS per 1K LUTs,
and FPS per W (dynamic power) usage. The FPGA implementations, Minitaur [24], Han et al. [12],
and Ju et al. [14], achieve 92%, 97.06%, and 98.94% accuracy with 108, 161 and 164 FPS, respectively.
The prior neuromorphic hardware studies, Darwin [6], Stromatias et al. [34], and Esser et al. [8],
achieve 93.8%, 95%, 95% accuracy with 6.25, 50, and 1,000 FPS respectively. More recently, a temporal
encoding based SNN inference on Xilinx ZCU102 SoC board for MNIST image clasification achieves
an accuracy of 99.2% and a simulation performance of 2,124 FPS [9] at 125MHz. Shown in Table 3,
the same work also demonstrates superior performance of FPGA-based SNNs over that on CPU,
GPU, Intel Loihi neuromorphic chip [9].

In terms of power measurements, we use a power meter to collect the results. In our experiments,
we measure two power values. First, we measure the power of just loading the built SyncNN FPGA
bitstream into the SD card and powering on the embedded ZCU102 ARM-FPGA SoC board without
running any SyncNN network. We call this value as the static power, which is needed to run the
embedded peripherals of the board. On average, the static power for SyncNN is 24.1W on the
ZCU102 board. When running he network, irrespective of the size of the SyncNN network, the
readings increase with an average of 0.4W and record 24.5W. Therefore, the power required to run
any SyncNN network is around 0.4W, which we call it as the dynamic power. The prior studies
[9] and [24] report their power requirements as 4.5W and 1.5W respectively, where [9] uses the
same ZCU102 FPGA platform. There are no details about how these prior studies have measured
their power; we believe it should be dynamic power in [9] and [24]. In order to have a uniform
comparison with the prior studies, we use the dynamic power and calculate the FPS/W in Table 3.
As shown in Table 3, in terms of FPS/W, SyncNN is orders-of-magnitude better than prior FPGA
designs [9] and [24], and competitive to the True North ASIC design [21].

Our SyncNN framework stands out in terms of all four metrics—accuracy, FPS, FPS per
DSP, FPS per 1K LUTs , and FPS per W (dynamic power) usage—for the MNIST dataset,
compared to the prior neuromorphic hardware implementations, FPGA and GPU imple-
mentations. SyncNN achieves a maximum of 13,086 FPS at 99.3% accuracy for the same Lenet-S
network and the same FPGA board used in [9]. SyncNN achieves 99.6% accuracy with 1,629 FPS on a
bigger network Lenet-L. For both networks, the hardware runs at 200MHz and uses 4 bits precision
for the network weights. In fact, SyncNN is the first work to explore 4 bits weights precision for
SNNs on FPGAs. It is also the first SNN framework on FPGAs that supports deep CNN models like
VGG and NiN.
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Table 3. Comparison with related work for image classification using SNNs for the MNIST dataset. *FPS/W
is measured using the dynamic power required to run the network.

Work Platform Frequency Training
Method

Precision
(bits) Network Accu-

racy (%) FPS FPS/
DSP

FPS per
1k LUTs

FPS/
W*

Stromatias et al.
(2015)∼ [34] ASIC SpiNNaker 150MHz Spike

Based 16 MLP 95 50 - - 167

Esser et al.
(2015) [8] ASIC True North - Offline

Training Binary - 95 1,000 - - 9,259

Darwin
(2017) [6] ASIC - 25MHz - 16 MLP 93.8 6.25 - - -

Minitaur
(2014)[24] FPGA Spartan-6

LX150 75MHz Spike
Based 16 MLP 92 108 - 1.22 72.4

Han et al.
(2020) [12] FPGA Xilinx

ZC706 200MHz Converted
SNNs 16 MLP 97.06 161 - 29.92 -

Ju et al.
(2020) [14] FPGA Xilinx

ZCU102 150MHz Converted
SNNs 8 CNN

(LeNet) 98.94 164 - 1.52 -

Fang et al.
(2020) [9]

ASIC Intel Loihi -

Spike
Based 16 CNN

(Lenet-S) 99.2

671 - - 178

CPU Intel
i9-9900K 3.7GHz 100 - - 1.72

GPU Nvidia
RTX 5000 1.62GHz 864 - - 14.1

Edge
GPU

Nvidia
AGX Xavier 1.37GHz 211 - - 15

FPGA
Xilinx
ZCU102
(Simulation)

125MHz 2,124 1.18 13.62 471

SyncNN
(Our Work) FPGA Xilinx

ZCU102 200MHz Converted
SNNs 4

CNN
(Lenet-S) 99.3 13,086 19.23 61.2 32,715

CNN
(Lenet-L) 99.6 1,629 2.94 7.25 4,072

6.7 Comparison with CNN Acceleration in Vitis AI
In Section 6.3, we observed that, SyncNN has about 4.67x to 14.47x savings than the conventional
CNNs in terms of number of computing operations. Although there are great algorithmic savings,
the event-driven nature of SNNs makes it challenging when accelerated on hardware. On the
other hand, the memory access pattern and the computation pattern is more regular in CNNs,
making the hardware acceleration better and easier. In this subsection, we experimentally compare
SyncNN to the FPGA-accelerated CNN (before it is converted to our SyncNN). There are numerous
studies involving the acceleration of CNNs on FPGAs. Here we use Vitis AI - Xilinx’s state-of-the-
art development platform for optimized AI inference on FPGA platforms [39]. Vitis AI supports
mainstream frameworks like TensorFlow, PyTorch, Caffe and Keras and provides optimized models
(compressed and quantized models at 8-bit precision) that are ready to deploy on Xilinx devices.
We implement the same networks discussed in Section 6.1 and evaluate the CNN performance.

First, as shown in Figure 12a, we compare the CNN evaluation accuracy, Vitis AI hardware
accuracy for CNN, converted SyncNN hardware accuracy. For smaller networks like Lenet-S and
Lenet-L, both Vitis AI and SyncNN achieves almost the same accuracy as the software CNN
accuracy. For deeper networks like NiN and VGG, for the CIFAR-10 and SVHN dataset, we see that
the converted SyncNNs achieves slightly better accuracy than that of Vitis AI.
Next, as shown in Figure 12b, we compare the hardware performance in terms of Frames Per

Second (FPS) between Vitis AI and SyncNN on ZCU104 and ZCU102 FPGA boards. In Vitis AI, we
see that the performance of ZCU104 and ZCU102 FPGA boards almost remains the same. But in
SyncNN, there is a drastic improvement in performance with ZCU102 board over ZCU104 board as
the memory and computing resources of ZCU102 board is relatively higher than ZCU104 board. For
smaller networks like LeNet-S and LeNet-L with the MNIST dataset, we see that SyncNN performs
better with 2.27x and 1.6x speedup than the Vitis AI, respectively. This is because of two primary
reasons. On one hand, SyncNN explores 4 bits quantization for network weights for LeNet-S and
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Fig. 12. Accuracy and performance comparison of CNN in Vitis AI and SyncNN

LeNet-L networks, but Vitis AI explores 8 bits quantization for network weights (note that the
Vitis AI engine is fixed to 8 bits and is not configurable). On the other hand, for smaller networks,
most of the network parameters can be buffered on-chip reducing the off-chip access as discussed
in Section 5.3. But for deeper networks like NiN and VGG, Vitis AI has better performance than
SyncNN. This is because, for deeper networks, SyncNN is more difficult to buffer the irregularly
accessed weights and has more off-chip access.

Moreover, we also compare the detailed power consumption and performance per watt (FPS/W
in terms of dynamic power) results between Vitis AI and SyncNN on the ZCU102 FPGA board, as
shown in Table 4. First, Vitis AI consumes a higher static power of 31.3W, since it has a larger FPGA
bitstream. Second, unlike SyncNN, where the dynamic power usage remains constant for running
different networks, Vitis AI has different dynamic power usage for different networks. Specifically,
SyncNN runs at a constant dynamic power of 0.4W for all the networks. But, Vitis AI runs between
a dynamic power of 1.3W for smaller LeNet network and 15.5W for deeper network like VGG,
which is much higher than SyncNN. As shown in Table 4, SyncNN has better performance per watt
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Table 4. FPS per (dynamic) Watt comparison of SyncNN and Vitis AI on the ZCU102 platform. We have
recorded three different power values: 1) the total power is the power recorded when running the network; 2)
static power is the power recorded when the FPGA board powers on and remains idle with the bitstream
loaded in the SD card; and 3) the dynamic power is the power difference between the two. Note that FPS/W
is calculated using the dynamic power.

Network/
& Dataset

Vitis AI SyncNN
Total

Power (W)
Static

Power (W)
Dynamic
Power (W) FPS/W Total

Power (W)
Static

Power (W)
Dynamic
Power (W) FPS/W

MNIST (LeNet-S) 32.6 31.3 1.3 4,287 24.5 24.1 0.4 32,715
MNIST (LeNet-L) 34.8 31.3 3.5 375 24.5 24.1 0.4 4,073
CIFAR-10 (NiN) 37.2 31.3 5.9 355 24.5 24.1 0.4 368
CIFAR-10 (VGG) 46.8 31.3 15.5 58 24.5 24.1 0.4 155
SVHN (LeNet-S) 34.1 31.3 2.8 1,222 24.5 24.1 0.4 9,238
SVHN (VGG) 45.9 31.3 14.6 145 24.5 24.1 0.4 163

results, which is 1.04x to 10.87x better than Vitis AI across a wide range of networks and dataset
using the same ZCU102 FPGA platform.
Therefore, as a final verdict, SyncNN would perform better than Vitis AI for networks where

most of the network parameters can remain on-chip for a given FPGA board, as SyncNN requires
less computing operations than CNNs. For larger networks, due to the random-access nature of
SNN, it is difficult to buffer the network parameters, making the conventional CNN performance
better than SyncNN. However, for all the networks, SyncNN performs better than Vitis AI CNNs in
terms of FPS/W. This is mainly because, the SyncNN framework runs at a constantly much lower
power for all the networks. Also, SyncNN based SNNs can achieve a similar accuracy to Vitis AI
for image classification problems, and has more potential for neuromorphic datasets like N-MNIST,
N-Caltech101 and DvsGesture, which we plan to evaluate in future work.

7 CONCLUSION
In this paper, we have proposed a novel synchronous approach called SyncNN, to accelerate event-
driven rate encoding SNNs on FPGAs. First, we quantitatively compared the CNNs, asynchronous
SNNs, and SyncNNs, to demonstrate the advantage of SyncNNs. Also, we prove that SyncNN
is mathematically the same as the asynchronous approach. Second, we applied SNN-friendly
quantization techniques, to reduce the computing operations and memory accesses. Moreover,
we developed configurable and scalable computing engines on FPGAs to accelerate different
network models of SNNs across various Xilinx ARM-FPGA SoCs. SyncNN is capable to run any
deep networks on a given Xilinx ARM-FPGA SoC and it is the first work to explore NiN and VGG
networks for SNNs on FPGAs. SyncNN achieves the state-of-the-art performance for MNIST dataset
with 13,086 FPS, which is 6.16x faster than the previous state-of-the-art implementation for the
same network configuration and same FPGA board. SyncNN reports the best accuracy of 99.6% for
MNIST, which is so far the highest accuracy recorded for SNNs on any hardware implementation,
to the best of our knowledge. Finally, we compare the performance of SyncNN with Vitis AI based
CNNs and observed 2.26x speedup for the MNIST dataset. We have also open sourced SyncNN
(https://github.com/SFU-HiAccel/SyncNN) to the community to stimulate more researches in the
area of FPGA-based SNNs that has a high potential in future deep learning systems.
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