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Abstract—Since its establishment in 2009, the Center for
Domain-Specific Computing (CDSC) has focused on customizable
computing. We believe that future computing systems will be cus-
tomizable with extensive use of accelerators, as custom-designed
accelerators often provide 10-100X performance/energy efficiency
over the general-purpose processors. Such an accelerator-rich
architecture presents a fundamental departure from the classical
von Neumann architecture, which emphasizes efficient sharing
of the executions of different instructions on a common pipeline,
providing an elegant solution when the computing resource is
scarce. In contrast, the accelerator-rich architecture features
heterogeneity and customization for energy efficiency; this is
better suited for energy-constrained designs where the silicon
resource is abundant and spatial computing is favored—which
has been the case with the end of Dennard scaling. Currently,
customizable computing has garnered great interest; e.g. this
is evident by Intel’s $17B acquisition of Altera in 2015 and
Amazon’s introduction of FPGAs in its AWS public cloud.

In this paper we present an overview of the research programs
and accomplishments of CDSC on customizable computing, from
single-chip to server node and to data centers, with extensive
use of composable accelerators and field-programmable gate-
arrays (FPGAs). We highlight our successes in several appli-
cation domains, such as medical imaging, machine learning, and
computational genomics. In addition to architecture innovations,
an equally important research dimension enables automation
for customized computing. This includes automated compila-
tion for combining source-code-level transformation for high-
level synthesis with efficient parameterized architecture template
generations, and efficient runtime support for scheduling and
transparent resource management for integration of FPGAs
for datacenter-scale acceleration with support to the existing
programming interfaces, such as MapReduce, Hadoop, and
Spark, for large-scale distributed computation. We shall present
the latest progress in these areas, and also discuss the challenges
and opportunities ahead.

Index Terms—Customizable Computing, Specialized Acceler-
ation, Accelerator-Rich Architecture, CPU-FPGA, FPGA Cloud.

I. INTRODUCTION

S INCE the introduction of the microprocessor in 1971,
the improvement of processor performance in its first

thirty years was largely driven by the Dennard scaling of
transistors [1]. This scaling calls for reduction of transistor
dimensions by 30% every generation (roughly every two
years) while keeping electric fields constant everywhere in
the transistor to maintain reliability (which implies that the
supply voltage needs to be reduced by 30% as well in
each generation). Such scaling not only doubles the transistor
density each generation and reduces the transistor delay by
30%, but also at the same time improves the power by 50%
and energy by 65% [2]. The increased transistor count also
leads to more architecture design innovations, such as better

memory hierarchy designs and more sophisticated instruction
scheduling and pipelining support. These combined factors
led to over 1,000 times performance improvement of Intel
processors in 20 years (from the 1.5um generation to the 65
nm generation), as shown in [2].

Unfortunately, Dennard scaling came to an end in the early
2000s. Although the transistor dimension continues to be
reduced by 30% per generation according to Moore’s law,
the supply voltage scaling had to almost come to a halt
due to the rapid increase of leakage power, which means
that transistor density can continue to increase, but so can
the power density. In order to continue meeting the ever-
increasing computing needs, yet maintaining a constant power
budget, simple processor frequency is no longer scalable and
there is a need to exploit the parallelism in the applications
to make use of the abundant number of transistors. As a
result, the computing industry entered the era of parallelization
in early 2000s, with tens to thousands of computing cores
integrated in a single processor, and tens of thousands of
computing servers connected in a warehouse-scale data center.
However, the studies in the late 2000s showed that such highly
parallel, general-purpose computing systems would soon again
face serious challenges in terms of performance, power, heat
dissipation, space, and cost [3], [4]. There is a lot of room
to be gained by customized computing, where one can adapt
the architecture to match the computing workload for much
higher computing efficiency using various kinds of customized
accelerators. This is especially important as we enter a new
decade with a significant slowdown of Moore’s Law scaling.

So, in 2008 we submitted a proposal entitled ”Customiz-
able Domain-Specific Computing” to the National Science
Foundation (NSF), where we look beyond parallelization and
focus on domain-specific customization as the next disruptive
technology to bring orders-of-magnitude power-performance
efficiency. We were fortunate that the proposal was funded
by the Expeditions in Computing Program, one of the largest
investments by the NSF Directorate for Computer and In-
formation Science and Engineering (CISE), which led to the
establishment of the Center for Domain-Specific Computing
(CDSC) in 2009 [5]. This paper highlights a set of research
results from CDSC in the past decade.

Our proposal was motivated by the large performance gap
between a totally customized solution using an application-
specific integrated circuit (ASIC) and a general-purpose pro-
cessor shown in several studies. In particular, we quoted a
2003 case study of the 128-bit key AES encryption algorithm
[6], where an ASIC implementation in a 0.18um CMOS
technology achieved a 3.86Gbits/second processing rate at
350mW power consumption, while the same algorithm coded
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in assembly languages yielded a 31Mbits/second processing
rate with 240mW power running on a StrongARM processor,
and a 648Mbits/second processing rate with 41.4W power
running on a Pentium III processor. This implied a perfor-
mance/energy efficiency (measured in Gbits/second/W) gap of
a factor of 85X and 800X, respectively, when compared with
the ASIC implementation.

The main source of energy inefficiency was due to the
classical von Neumann architecture, which was an ingenious
design proposed in 1940s when the availability of computing
elements (electronic relays or vacuum tubes) was the limiting
factor. It allows tens or even hundreds of instructions to be
multiplexed and executed on a common datapath pipeline.
However, this general-purpose, instruction-based architecture
comes with a high overhead for instruction fetch, decode,
rename, schedule, etc. In [7] it was shown that for a typical
superscalar out-of-order pipeline, the actual compute units and
memory account for only 36% of the energy consumption,
while the majority of the energy consumption (i.e., the remain-
ing 64%) is for supporting the flexible instruction-oriented
general-purpose architecture. After more than five decades of
Moore’s Law scaling, however, we now can integrate tens of
billions of transistors on a single chip. The design constraint
has shifted from compute resource limited to power/energy-
limited. Therefore, the research at CDSC focuses on extensive
use of customizable accelerators, including fine-grain field-
programmable gate arrays (FPGAs), coarse-grain reconfig-
urable arrays (CGRAs), or dynamically composable accelera-
tor building blocks at multiple levels of computing hierarchy
for greater energy efficiency. In many ways, such accelerator-
rich architectures are similar to a human brain, which has many
specialized neural microcircuits (accelerators), each dedicated
to a different function (such as navigation, speech, vision,
etc.). The computation is carried out spatially instead of being
multiplexed temporally on a common processing engine. Such
high degree of customization and spatial data processing in
the human brain leads to a great deal of efficiency—the brain
can perform various highly sophisticated cognitive functions
while consuming only about 20W, an inspiring and challenging
performance for computer architects to match.

Since the establishment of CDSC in 2009, the theme
of customization and specialization also received increasing
attention from both the research community and the industry.
For example, Baidu and Microsoft introduced FPGAs in their
data centers in 2014 [8], [9]. Intel acquired Altera, the second-
largest FPGA company in 2015 in order to provide integrated
CPU+FPGA solutions for both cloud computing and edge
computing [10]. Amazon introduced FPGAs in its AWS com-
puting cloud in 2016 [11]. This trend was quickly followed by
other cloud providers, such as Alibaba [12] and Huawei [13].
It is not possible to cover all the latest developments in
customizable computing in a single paper. This paper chooses
to highlight the significant contributions in the decade-long
effort from CDSC. We also make an effort to point out the
most relevant work. But it is not the intent of this paper to
provide a comprehensive survey of the field, and we regret for
the possible omissions of some related results.

The remainder of this paper is organized as follows. Section

II discusses different levels of customization, including the
chip level, server-node level, and datacenter level, and presents
the challenges and opportunities at each level. Sections III
presents our research on compilation tools to supporting the
easy programming for customizable computing. Sections IV
presents our runtime management tools to deploy such accel-
erators in servers and datacenters. We conclude the paper with
future research opportunities in Section V.

II. LEVELS OF CUSTOMIZATION

Our research suggests that customization can be enabled at
different levels of computing hierarchy, including chip-level,
server-node level, and datacenter-level. This section discuss
the customization potential at each, and the associated arhi-
tecture design problems, such as 1) How flexible should the
accelerator design be, from fixed-function accelerator design
to composable accelerators to programmable fabric; 2) How
to design the corresponding on-chip memory hierarchy and
network-on-chip efficiently for such accelerator-rich architec-
tures? 3) How to efficiently integrate the accelerators with the
processor? We leave the compilation and runtime support to
the next section.

A. Chip-Level Customization

1) Overview of accelerator-rich architectures: Since the es-
tablishment of CDSC, we have explored various design options
for the chip-level customizable accelerator-rich architectures
(ARAs). In such ARAs, a sea of heterogeneous accelerators
are customized and integrated into the processor chips, in com-
panion with a customized memory hierarchy and network-on-
chip, to provide orders-of-magnitude performance and energy
gains over conventional general-purpose processors. Figure 1
presents an overview of our ARA research scope including
customization for compute resources, on-chip memory hierar-
chy, and network-on-chip. An open source simulator called
PARADE [14] is developed to perform such architectural
studies. In companion with the PARADE simulator, a wide
range of applications, including those in medical imaging,
computer vision and navigation, and commercial benchmarks
from PARSEC, are used to evaluate the designs [14].
Customizable compute resources. As shown in Figure 1,
our first ARA design (ARC [15], [16]) features dedicated
accelerators designed for a specific application domain. ARC
features a global hardware accelerator manager to support
sharing and arbitration of multiple cores for a common set
of accelerators. It uses a hardware-based arbitration mecha-
nism to provide feedback to cores to indicate the wait time
before a particular accelerator resource becomes available and
lightweight interrupts to reduce the OS overhead. Simulation
results show that, with a set of accelerators generated by a
high-level synthesis tool [17], it can achieve an average of 18x
speedup and 24x energy gain over an Ultra-SPARC CPU core
for a wide range of applications in medical imaging, computer
vision and navigation, as well as commercial benchmarks from
PARSEC [18]. From this study, we also noticed that many
accelerators in a given domain can be decomposed into a
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Fig. 1: An overview of Accelerator-Rich Architectures (ARAs).

set of primitive computations, such as low-order polynomi-
als, square-root, and inverse computations. So, our second-
generation ARA (CHARM [7], [19]) uses a set of accelerator
building blocks (ABBs), which are grouped into ABB islands,
to compose accelerators based on current system demand.
The composition of accelerators are statically determined
at the compilation time, but dynamically allocated from a
resource pool at runtime by an on-chip accelerator building
block composer (ABC), leading to a much more efficient
resource utilization. With respect to the same set of medical
imaging benchmarks, the experimental results on CHARM
demonstrate over 2x better performance than ARC with similar
energy-efficiency for medical imaging applications. In order
to support new workloads which were not considered in the
ABB designs, our third-generation ARA (CAMEL [20]) uses
a programmable fabric to provide even more adaptability and
longevity to the design. Accelerator building blocks could
be synthesized in the programmable fabric to match varying
demand, from new emerging domains or algorithmic evolution
in the existing application domains.

In our ARA work, all accelerators are loosely coupled
with CPU cores in a sense that they do not belong to any
single core, but can be shared by all the cores via network-
on-chip. In fact, they share L2 cache with the CPU cores
(more discussion about the memory customization in the next
subsection). Alternative approaches from other research groups
explored the use of tightly coupled accelerators by extending
a processor core with customized instructions or functional
units for lower latency [21], [22]. In terms of the granularity of
the customized accelerators, commercial field programmable

fabrics (FPGAs) provide ultra-fine-grained reconfigurability
that sacrifices some efficiency and performance for generality,
while coarse-grained reconfigurable arrays (CGRAs) [23]–[25]
provide composable accelerators with near-ASIC performance
and FPGA-like configurability. We expect future chips to have
more computing heterogeneity with different trade-off between
programmability and efficiency, including various CPU cores,
dedicated accelerators, composable accelerators, fine-grain and
coarse-grain programmable fabrics, as well as SIMD cores in
a single chip to satisfy the computing demands of the ever-
changing applications.
Customizable on-chip memory hierarchy. In an accelerator-
based architecture, buffers are commonly used as near mem-
ories for accelerators. An accelerator needs to fetch multiple
input data elements simultaneously with predictable or even
fixed latency to maximize its performance. To achieve this
goal, we engaged in a series of studies to customize the
on-chip memory hierarchy to investigate both the dedicated
buffers for accelerators [26]–[28], and hybrid and adaptive
cache and buffer designs shared between CPU cores and
accelerators [29]–[31], as shown in Figure 1.

For the dedicated buffers for accelerators, we often have
to partition a buffer into multiple on-chip memory banks
to maximize on-chip memory bandwidth. We developed the
general theory and algorithms for cyclic memory partitioning
to remove memory access conflict at each clock cycle to enable
efficient pipelining [26], [27]. For stencil applications, we also
develop an optimal non-uniform memory partitioning scheme
that is guaranteed to simultaneously minimize the on-chip
buffer size and off-chip memory access [28]. These results
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Fig. 2: Address translation support for ARA.

can be used for both ASIC and FPGA accelerator designs.
One representative example of adaptive cache shared be-

tween CPU cores and on-chip accelerators is our Buffer-in-
NUCA (BiN) work [31], which dynamically allocates buffers
of competing cores and accelerators in a non-uniform cache
architecture (NUCA). BiN features: 1) a global buffer manager
responsible for buffer allocation to all accelerators on-chip; 2)
a dynamic interval-based global allocation method to assign
spaces in NUCA caches to accelerators that can best utilize
the additional buffer space, and 3) a flexible paged allocation
method to minimize accelerator-to-buffer distance and limit
the impact of buffer fragmentation, with only a small local
page table at each accelerator. Compared to the alternative
approaches using the accelerator store (AccStore) scheme [32]
and the Buffer-integrated-Cache (BiC) scheme [33] for shar-
ing buffers and/or caches among accelerators, BiN improves
performance by 32% and 35% and reduces energy by 12%
and 29% for medical imaging applications.

To improve the ARA programmability and avoid unnec-
essary memory copy between CPU cores and accelerators,
a unified memory space between them is essential. In order
to support such unified memory space, we have to provide
efficient address translation support in ARAs. We characterize
the memory access behavior of customized accelerators to
drive the TLB augmentation and MMU designs, as shown in
Figure 2. First, to support bulk transfers of consecutive data
between the scratchpad memory of customized accelerators
and the memory system, we present a relatively small private
TLB design (with 32 entries per accelerator instance) to
provide low-latency caching of translations to each accelerator.
Second, to compensate for the effects of the widely used
data tiling techniques, we design a level-two TLB (with 512
entries) to be shared by all accelerators to reduce private
TLB misses on common virtual pages, eliminating duplicate
page walks from accelerators working on neighboring data
tiles that are mapped to the same physical page. This two-
level TLB design effectively reduces page walks by 75.8% on
average. Finally, instead of implementing a dedicated MMU
which introduces additional hardware complexity, we propose
simply leveraging the host per-core MMU for efficient page
walk handling. This mechanism is based on our insight that
the existing MMU cache and data cache in the host core side
satisfies the demand of customized accelerators with minimal
overhead. Using applications in the four domains mentioned
at the beginning of Section II-A, our evaluation demonstrates
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Fig. 3: Hybrid network-on-chip with predictive reservation.

that the combined approach achieves 7.6x average speedup
over the naive IOMMU approach, and is only 6.4% away from
the performance of the ideal address translation [34].
Customizable network-on-chip (NoC). The throughput of
an accelerator is often bound by the rate at which the ac-
celerator is able to interact with the memory system. As
shown in Figure 1, on one hand, we explored the use of
radio frequency interconnect (or RF-I) over on-chip wave-
guided transmission lines [35] as on-chip interconnect to
provide high aggregate bandwidth, low latency via signal
propagation at the speed of light, and customizable point-to-
point communications (through frequency multiplexing). On
the other hand, we developed a hybrid network-on-chip based
on the conventional on-chip interconnect technology but with
a hybrid circuit switching and packet switching to improve
the performance. In particular, it uses predictive reservation
(HPR) [36], shown in Figure 3, based on the observation
that accelerator memory accesses usually exhibit predictable
patterns, creating highly utilized network paths. By introduc-
ing circuit-switching to cover accelerator memory accesses,
HPR reduces per-hop delays for accelerator traffic. Unlike
previous circuit-switching proposals, HPR eliminates circuit-
switching setup and tear-down latency by reserving circuit-
switched paths when accelerators are invoked. We further
maximize the benefit of path reservation by regularizing the
communication traffic through TLB buffering and hybrid-
switching. The combined effect of these optimizations reduces
the total execution time by 11.3% over a packet-switched mesh
NoC. A more detailed survey of most of these techniques
covered in this subsection can be found in [37].

2) Simulation environment and in-depth analysis: To bet-
ter evaluate ARA designs, we developed an open-source
simulation infrastructure called PARADE: the Platform for
Accelerator-Rich Architectural Design and Exploration. In
addition, we performed in-depth analysis to provide insights
into how ARAs can achieve the large performance and energy
gains.
PARADE simulation infrastructure [14]. As shown in Fig-
ure 1, the PARADE infrastructure models each accelerator
quickly by leveraging high-level synthesis (HLS) tools, so
that users can easily describe the accelerators in high-level
C/C++ languages. We provide a flow to automatically generate
either dedicated or composable accelerator simulation mod-
ules that can be directly plugged into PARADE through the
customizable NoC. We also provide a cycle-accurate model
of the hardware global accelerator manager that efficiently
manages accelerator resources in the accelerator-rich design.
PARADE is integrated with the widely used cycle-accurate
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full-system simulator gem5 [38], which models the CPU
cores and the cache memory hierarchy. By extending gem5,
PARADE also provides a cycle-accurate model of the coherent
cache/scratchpad with shared memory between accelerators
and CPU cores, as well as a customizable network-on-chip.
In addition to performance simulation, PARADE also models
the power, energy and area using existing toolchains including
McPAT [39] for the CPU, and HLS and RTL tools for acceler-
ators. A wide range of applications with pre-built accelerators,
including those in medical imaging, computer vision and
navigation, and commercial benchmarks from PARSEC, are
also released with PARADE.
Performance analysis. To gain deep insights into the big
performance gains, we conduct an in-depth analysis of ARAs
and observe that ARAs achieve performance gains from both
computation and memory access customization: ARAs (a
single fixed-function accelerator instance in ARC) get 15x
speedup over CPUs (a single X86 CPU core) in the com-
putation, and 25x speedup in the memory access. For com-
putation customization, ARAs exploit both fine-grained and
coarse-grained parallelism to generate a customized processing
pipeline without instruction execution overhead. For mem-
ory access customization, ARAs exploit a tile-based three-
stage read-compute-write execution model that reduces the
number of memory accesses and improves the memory-level
parallelism (MLP). We quantitatively evaluate the performance
impact of both factors and surprisingly find that the domi-
nating contributor to the ARA memory access performance
improvement is the improved MLP rather than the widely-
expected memory access reduction. In fact, we find that
existing GPU accelerators also benefit from the improved MLP
through using different techniques. The totally customized
processing pipeline of ARAs further provide an average of
1.4x speedup over GPUs. On overage, ARAs are 18x more
energy efficient than GPUs, at the same technology node and
the same number of GPU stream multiprocessors and ARA
accelerator instances.

Fig. 4: An overview of the AIM architecture.

3) Near data acceleration: As we improve the computing
efficiency with the extensive use of accelerators, memory
bandwidth is becoming an increasing limitation. To address

this issue, our recent accelerator-interposed memory (AIM)
work [40] proposes to move the accelerators close to the mem-
ory system, as shown in Figure 4. To avoid the high memory
access latency and bandwidth limitation of CPU-side acceler-
ation, we design accelerators as a separate package, called an
AIM module, and physically place an AIM module between
each DRAM DIMM module and conventional memory bus
network. Such an AIM module consists of an FPGA chip to
provide flexible accelerator designs and two connectors, one
to the memory bus and the other to each DIMM. A set of
AIM modules can be introduced to an off-the-shelf computer
with minimal modification to the existing software (to enable
accelerator offloading). The overall memory capacity and
bandwidth scales well with the increasing number of DIMMs
in the system. Experimental results for genomics applications
show that AIM achieves up to 3.7x better performance than
the CPU-side acceleration, When there are 16 instances of
accelerators and DIMMs in the system. The AIM approach is
a viable alternative to 3D stacked memory [41], [42] and could
be more economical. We believe one of the future trends is to
move accelerators closer to the data, where they can have more
data access bandwidth, as well as lower data access latency.

B. Sever-Node Level Customization

Due to the high cost and long design cycle of ASIC
implementations, we did not implement he accelerator-rich
architectures (ARA) in a single silicon chip. Instead, we use
the server-node level integration of CPU+FPGA to support
customizable computing by implementing various accelerators
on FPGAs1 With such node-level customization, we are able to
achieve many interesting, often impressive acceleration results.

1) A Case Study of FPGA Accelerator Integration: This
section presents the result we achieved for accelerating the
CS-BWAMEM [43] algorithm, a Spark-based [44] parallel
implementation for the widely used BWA-MEM DNA se-
quencing algorithm [45], to illustrate the opportunities and
challenges for acceleration using CPU+FPGA based config-
uration. Specifically, we highlight the acceleration of one key
computation kernel of this program, the Smith-Waterman (S-
W) algorithm [46], and present the challenge and solution for
accelerator integration in the overall Spark-based application.
S-W FPGA accelerator. We first describe our FPGA accel-
erator design for the S-W algorithm in the CS-BWAMEM
software. The S-W algorithm is based on two-dimensional
dynamic programming algorithm with quadratic time com-
plexity, and is one of the major computation kernels of most
DNA sequencing applications. It is widely used for aligning
two strings with a predefined scoring system to achieve the
best alignment score, and many prior studies have proposed
a variety of hardware accelerators for the algorithm. These
accelerators basically share the common scheme of explor-
ing the “anti-diagonal” parallelism in the S-W algorithm,
and achieve good performance improvement for single S-W

1Note accelerators in this subsection are different to ASIC accelerators
simulated in Section II-A, here we are using FPGAs to accelerator certain
software functions.. Such systems are more cost efficient (based on off-the-
shelf components) and more scalable (e.g. one may attach multiple FPGAs
to a processor or upgrade the processor independent of the FPGAs).
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Fig. 5: PE-Array based Smith-Waterman accelerator design.

task [46]. However, this methodology does not work well for
the S-W implementation in the CS-BWAMEM application due
to the following reasons. First, the inner-task parallelism is
actually broken because the CS-BWAMEM software applies
extensive pruning. The pruning strategy results in 2x speedup,
but excludes the “anti-diagonal” parallelism. Moreover, the
efficiency of prior accelerators relies on the regularity of the
S-W input. CS-BWAMEM features a large number of S-W
tasks with highly variant input sizes (due to the unpredictable
outcome of initial exact seed matching step for each read),
which does not fit well for these accelerators.

Nevertheless, the DNA sequencing application feature a
large degree of task-level parallelism, i.e., one has to align
billions of short reads, which implies billions of independent
S-W tasks. Given these observations, in [47] we propose a S-
W accelerator design with a completely different methodology,
as shown in Fig. 5. The proposed design features an array of
processing elements (PEs) to process multiple S-W tasks in
parallel. Each PE processes a S-W task in a sequential way
instead of exploring the “anti-diagonal” parallelism. This leads
to a long processing latency of each S-W task, but a simplified
PE design with very small resource consumption. As a result,
the PE can be duplicated over 100 duplicates and the task-
level parallelism is well explored. Moreover, this PE design is
compatible with the pruning strategies, and is not affected by
the irregularity of the S-W input size. The ”task distributor”
in Fig. 5 feeds that each PE with sufficient tasks and the
”result collector” assures the eventual in-order completion. As
a result, the proposed design demonstrates 24x speedup over
12-core CPUs and 6x speedup over prior accelerator designs
exploring the “anti-diagonal” parallelism [47].
Challenges of hardware accelerator integration. Despite the
substantial speedup by FPGA acceleration, the integration of
FPGA accelerators into big-data computing frameworks like
Spark is not easy. First, the CPU-FPGA communication over-
head offsets the performance improvement of the FPGA accel-
eration. In particular, if the payload of each transaction is fairly
small (if one sends one short-read a time for alignment), the
communication overhead could easily become the dominant
performance factor. Another challenge is to efficiently share
the FPGA resource among multiple CPU threads. To address
these two challenges, we developed the batch processing and
Accelerator-as-a-Service (AaaS) approaches [48].
Batch processing. Apache Spark programs are mainly written

in Java and/or Scala, and run on Java virtual machines (JVMs)
that do not support the use of FPGAs by default. While
the Java native interface (JNI) serves as a standard tool to
address this issue, it does not always deliver an efficient
solution. In fact, if we invoke the FPGA accelerator routine
in a straightforward way once per S-W function, the system
performance will become over 1000x slower. The main reason
for this performance degradation is the tremendous JVM-
FPGA communication overhead aggregated through all the
invocations of the S-W accelerator. To be specific, in our
system, each S-W invocation of the software version on the
CPU costs no more than 20µs on average. Meanwhile, a
complete routine of a S-W accelerator invocation involves:
1) data copy between a JVM and a native machine, 2)
DMA transfer between a native machine and an FPGA board
though PCIe, and 3) computation on the FPGA board. The
communication process alone, including 1) and 2), costs over
25ms per invocation. That is, even if an accelerator could
reduce the computation time of the S-W kernel down to 0, the
communication overhead easily erase any performance gain.

To amortize the communication overhead, we batch a group
of reads together and offload them to the FPGA board to
improve the bandwidth utilization. In fact, any Spark-based
MapReduce program offers a large degree of parallelism in
the map stage. It is feasible and highly effective to conduct
batch processing for CS-BWAMEM. Specifically, we merge a
certain number of CS-BWAMEM’s map tasks into a new map
function, and conduct a series of code transformations to batch
the S-W kernel invocations from different map tasks together.
This approach substantially improves the system performance
and turns the 1000x slowdown back to 4x speedup compared
to the single-thread software implementation.
Accelerator-as-a-service (AaaS). Due to the high performance
of FPGA accelerators, offloading a single-thread CPU work-
load onto the FPGA usually makes the FPGA underutilized,
which leaves opportunities for FPGA accelerators to be shared
by multiple threads in a single node. The major challenge
is how to efficiently manage the FPGA accelerator resources
among multiple CPU threads. To tackle this challenge, we
propose an Accelerator-as-a-service (AaaS) 2 framework and
implement the FPGA management in a node-level accelerator
manager.

The AaaS framework abstracts the FPGA accelerator and its
management software on the CPU (called accelerator manager
(AM)) as a server, and treats each CPU thread as a client.
Client threads communicate with AM via a hybrid of JNI
and network sockets. Different client threads send requests
independently to the AM to accelerate S-W batches, and the
AM processes the requests in a first-come-first-serve way. The
AaaS framework enables sharing of the FPGA resource among
many CPU threads, and retains 3x speedup over the multi-
thread software.

In fact, this example motivated us to develop a more
general runtime system to support the accelerator integration

2As explained in this section, the AaaS concept we propose is different to
the one Amazon AWS uses.
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TABLE I: Classification of modern high-performance CPU-FPGA
platforms

Private Memory Shared Memory
Peripheral
Interconnect
(e.g., PCIe)

Alpha Data [49],
Microsoft Catapult [8]

IBM CAPI [51],
Intel HARPv2 [55]

Processor
Interconnect
(e.g., QPI)

N/A
Convey HC-1 [53],
Intel HARPv1 [54]
Intel HARPv2 [55]

for all Apache Spark programs, which will be presented in
Section IV.

2) Characterization of CPU-FPGA Platforms: The perfor-
mance and energy efficiency offered by FPGA accelerators
encouraged the development of a variety of CPU-FPGA plat-
forms. The choice of the best platform may vary depending
on the application workloads. So, we carried out a systematic
study to characterize the existing CPU+FPGA platforms and
present guidelines for platform choice for acceleration.

We classify the existing CPU+FPGA platforms in Table I
according to their physical integration mechanisms and the
memory models. The most widely used integration scheme
is to connect an FPGA to a CPU via the PCIe bus, with
both components using (separate) private memories. Many
FPGA boards built on top of Xilinx or Intel FPGAs use this
way of integration because of its extensibility. One example
is the Alpha Data FPGA board [49] with the Xilinx FPGA
fabric that can leverage the Xilinx SDAccel development
environment [50] to support efficient accelerator design us-
ing high-level programming languages, including C/C++ and
OpenCL. This platform was used in the preceding section
for CS-BWAMEM acceleration. Nevertheless, vendors like
IBM also support a PCIe connection with a coherent, shared
memory model for easier programming. For example, IBM has
been developing the Coherent Accelerator Processor Interface
(CAPI) on POWER8 [51] for such an integration, and has
used this platform in the IBM data engine for NoSQL ac-
celeration [52]. More recently, closer CPU-FPGA integration
becomes available using a new class of processor-to-processor
interconnects such as front-side bus (FSB) and the newer
QuickPath Interconnect (QPI). These platforms tend to provide
a coherent shared memory, such as the FSB-based Convey
system [53] and the Intel HARP family [54]. While the
first generation of HARP (HARPv1) connects a CPU to an
FPGA only through a coherent QPI channel, the second
generation of HARP (HARPv2) adds two non-coherent PCIe
data communication channels between the CPU and the FPGA,
resulting in a hybrid CPU-FPGA communication model.

To better understand and compare these platforms, we
conducted a quantitative analysis using micro-benchmarks to
measure the effective bandwidth and latency of CPU-FPGA
communication on these platforms. The results lead to the
following key insights (see [56] for details):
Insight 1: The host-to-accelerator effective bandwidth can
be much lower than the peak physical bandwidth (often
the ”advertised bandwidth” in the product datasheet). For
example, the Xilinx SDAccel runtime system running on
a Gen3x8 PCI-e bus achieves only 1.6 GB/s CPU-FPGA

communication bandwidth to end users, while the PCIe peak
physical bandwidth is 8 GB/s bandwidth [56]. Evaluating a
CPU-FPGA platform using these advertised values is likely to
result in a significant overestimation of the platform perfor-
mance. Worse still, the relatively low effective bandwidth is
not easy to achieve. In fact, the communication bandwidth for
a small size of payload can be 100x smaller than the maximum
achievable effective bandwidth. A specific application may not
always be able to supply each communication transaction with
a sufficiently large size of payload to reach a high bandwidth
(which was encountered in our accelerator design of another
kernel of CS-BWAMEM [57]). For streaming applications, the
recent work on ST-Accel [58] greatly improved the CPU-
FPGA latency and bandwidth with an efficient host-FPGA
communication library, which supports zero-copy (to eliminate
the overhead of buffer copy during the data transferring)
and operating system kernel bypassing (to minimize the data
transferring latency).
Insight 2: Both the private-memory and shared-memory
platforms have opportunities to outperform each other. In
general, a private-memory platform like Alpha Data reaches
a lower CPU-FPGA communication latency and bandwidth
because it has to transfer data from the host memory to the
device memory on the FPGA board first in order to be accessed
by the FPGA fabric, while its shared-memory counterpart
allows the FPGA fabric to directly retrieve data from the
host memory, thus simplifying the communication process
and improving the latency and bandwidth. The opportunity of
private-memory platforms, nevertheless, comes from the cases
when the data in the FPGA device memory are reused by
the FPGA accelerator multiple times, since the bandwidth of
accessing the local device memory is generally higher than
that of accessing the remote host memory. This is particularly
beneficial for iterative algorithms like logistic regression where
a large amount of read-only (training) data are iteratively
referenced for many times while only the weight vector is
being updated [59]. This trade-off is modeled in [56] to help
accelerator designers estimate the effective CPU-FPGA com-
munication bandwidth given the reuse ratio of the data loaded
to the device memory. For latency-sensitive applications like
high-frequency trading, online transaction processing, or au-
tonomous driving, the shared-memory platform is preferred
since it features a simpler communication stack and lower
latency. Another low-latency configuration is to have FPGAs
connected to the network switches directly, as done with the
Microsoft Azure SmartNIC [60]. It provides not only low-
latency processing of the network data and but also excellent
scalability to form large programmable fabrics. However, since
FPGAs on the Microsoft Azure is not yet open to the public,
we could not provide a quantitative evaluation.
Insight 3: CPU-FPGA memory coherence is interesting,
but not yet very useful in accelerator design, at least
for now. The newly announced CPU-FPGA platforms, in-
cluding CAPI, HARPv1 and HARPv2, attempt to provide
memory coherence support between the CPU and the FPGA.
Their implementation methodologies are similar: constructing
a coherent cache on the FPGA fabric to realize the classic
coherency protocol with the last-level cache of the host CPU.
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However, although the FPGA fabric supplies megabytes of on-
chip BRAM blocks, only 64KB (the HARP family) or 128KB
(CAPI) of them are organized into the coherent cache. That is,
these platforms maintain memory coherence for only less than
5% of the on-chip memory space, leaving the majority on-chip
memory (BRAMs) to be managed by application developers,
which defeat the original goal of providing simpler program-
ming interface via memory coherency. Moreover, the current
implementation of coherence cache access is not efficient.
For example, the coherent cache access latency of the Intel
HARP platform is up to 80ns, while the data stored in the
on-chip BRAM blocks can be retrieved in only one FPGA
cycle (5ns) [56]. Also, the coherent cache provides much less
parallel access capability compared to the scratchpads that can
potentially feed thousands of data per cycle. In fact, all existing
CPU-FPGA platforms support only single-port caches, i.e.,
the maximal throughput of these cache structures is only one
transaction per cycle, resulting in very limited bandwidth. As
a consequence, for now accelerator designers may still have
to explicitly manage FPGA on-chip memories.

C. Datacenter-Level Customization

Since many big-data applications require more than one
compute server to run, it is natural to consider cluster-level or
datacenter-level customization with FPGAs. Moreover, given
the significant energy consumed by modern datacenters, en-
ergy reduction using FPGAs in the datacenter has the most
impact. Since 2013, we explore the design options in hetero-
geneous datacenters with FPGA accelerators via quantitative
studies on a wide range of systems, including an Xeon CPU
cluster, an Xeon cluster with FPGA accelerator attached to the
PCI-E bus, a low-power Atom CPU cluster, and a cluster of
embedded ARM processors with on-chip FPGA accelerators.

To evaluate the performance and energy efficiency of vari-
ous accelerator-rich systems, several real prototype hardware
systems are built to experiment with real-world big-data ap-
plications.

1) Small-Core with On-Chip Accelerators: We built a
customized cluster of low-power CPU cores with on-chip
FPGA accelerator. The Xilinx Zynq SoC was selected as the
experimental heterogeneous SoC, which includes a processing
system based on dual ARM A9 cores and a programmable
FPGA logic. The accelerators are instantiated on the FPGA
logic and can be reconfigured during runtime. We build a
cluster of eight Zynq nodes. Each node in the cluster is a
Xilinx ZC706 board, which contains a Xilinx Zynq XC7Z045
chip. Each board also has 1GB of on-board DRAM and a
128GB SD card used as a hard disk. The ARM processor in
the Zynq SoC shares the same DRAM controller as well as
address space with the programmable fabrics. The processor
can control the accelerators on the FPGA fabrics using two
system buses. The memory is shared through four high-
performance memory buses (HPs) and one coherent memory
bus (ACP). All the boards are connected to a gigabit Ethernet
switch.

A snapshot of the system is shown in Figure 6.The hardware
layout of the Zynq boards and their connection is shown

Fig. 6: Snapshot of the prototype cluster
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Fig. 7: System overview of the prototype cluster

in Figure 7 in the bottom box for the ZC706 board. The
software setup and accelerator integration method are shown
in the upper box in Figure 7. A lightweight Linux system
is running on the ARM processors of each Zynq board;
this provides drivers for peripheral devices such as Ethernet
and SD card, and also controls the on-chip FPGA fabrics.
To instantiate accelerators on the FPGA, we design a driver
module to configure the control registers of the accelerators as
memory-mapped IOs, and use DMA buffers to facilitate data
transfers between the host system and the accelerators. Various
accelerators are synthesized as FPGA configuration bitstreams
and can be programmed on the FPGA at runtime.

2) Big-Core with PCIE-connected Accelerators: Similar to
existing GPGPU platforms, FPGA accelerators can also be
integrated into normal server nodes using the PCIE bus. Taking
advantage of the energy efficiency of the FPGA chips, these
PCIE accelerator boards usually do not require an external
power supply, which makes it possible to deploy FPGA accel-
erators into datacenters without the need to modify existing
infrastructures. In our experiments, we integrate AlphaData
(AD) FPGA boards into our Xeon cluster shown in Figure 8,
which has 20 Xeon CPU servers connected with both 1G and
10G Ethernet. Each server contains an FPGA board with a
Xilinx Virtex-7 XC7VX690T-2 FPGA chip and 16GB of on-
board memory.
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Fig. 8: Experimental cluster with standard server node integrated with
PCI-E based FPGA board from AlphaData
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Fig. 9: Execution time (above) and energy consumption (below)
normalized to the results on one Xeon server.

3) Baseline Small-Core and Big-Core Systems: For com-
parison purpose, we used a cluster of eight nodes of Intel
Atom CPUs and a cluster of eight nodes of embedded ARM
cores as the baseline of small-core CPU systems. The ARM
cluster is the same as our prototype presented earlier in this
section. For the baseline of big-core CPU systems, we re-use
the server cluster in Figure 8 but without activation of the
FPGAs.

4) Evaluation Results: We measure the total application
time, including the initial data load and communication. The
energy consumption is calculated by measuring the average
power consumption during operation using a power meter and
multiplying it by the execution time, since we did not observe
significant variations of system power during the execution in
our experiments. All the energy consumption measurements
also include a 24-port 1G Ethernet switch.

a) Small-Core vs. Big-Core Systems: We first evaluate
the performance and energy consumption between big-core
with FPGA and small-core with FPGA using two popular ma-
chine learning algorithms: logistic regression (LR) and and k-
means (KM) clustering. Figure 9 illustrates the execution time
and energy consumption of running LR and KM applications
on different systems. Notably, although the Atom or ARM
processor have much lower power, it suffers long runtime
for these applications. As a result, both the performance and

energy efficiency of pure Atom and ARM clusters are worse
than the single Xeon server, which confirms the argument in
[61] that low-power cores could be less energy-efficient for
computation-intensive workloads.

b) Big-Core vs. Big-Core + FPGA: We then present the
effectiveness of FPGA accelerators in a common datacenter
setup. Figure 9 includes the comparison between a CPU-only
cluster and a cluster of CPUs with PCIE FPGA boards using
LR, KM. For the machine learning workloads where most
of the computation can be accelerated, FPGA can contribute
to significant speedup with only a small amount of extra
power. More specifically, the big-core plus FPGA configu-
ration achieves 3.05× and 1.47× speedup for LR and KM
respectively and reduces the overall energy consumption to
38% and 56% of the baseline respectively (which implies a
2-3x energy reduction).

c) Small-Core + FPGA vs. Big-Core + FPGA: Several
observations can be drawn from the results in Figure 9. First,
for both small-core and big-core systems, the FPGA accel-
erators provide significant performance and energy-efficiency
improvement—not only for kernels but also for the entire
application. Second, compared to big-core systems, small-
core systems benefit more from FPGA accelerators. This
means that it is more crucial to provide accelerator support
for future small-core-based datacenters. Finally, although the
kernel performance on eight Zynq FPGAs is better than one
AD FPGA, the application performance of Xeon with AD-
FPGA is still 2× better than Zynq. This is because on Zynq,
the non-acceleratable part of the program, such as disk I/O
and data copy, is much slower than Xeon. On the other hand,
the difference in energy-efficiency between Xeon plus FPGA
and Zynq is much smaller.

In parallel to the effort by CDSC on incorporating and
enabling FPGAs in computing clusters, a number of large
datacenter operators started supporting FPGAs in private or
public clouds. Baidu and Microsoft announced using FPGAs
in their datacenters in 2014 [8], [9], so far only for first-party
internal use. Amazon introduced FPGAs in its AWS public
computing cloud in late 2016 [11] for third-party use. This
trend was quickly followed by other public cloud providers,
such as Alibaba [12] and Huawei [13].

III. COMPILATION SUPPORT

The successful adoption of customizable computing de-
pends on ease of programming of such accelerator-rich ar-
chitectures (ARAs). Therefore, a significant part of CDSC
research has been devoted to develop the compilation and
runtime support for ARAs. Since the chip-level ARA is
still at its infancy (although we did develop a compilation
system for composable accelerator building blocks discussed
in Section II-A based on efficient pattern matching [62]),
we focus most of our effort on improving the acceleration
design and deployment on FPGAs for server-node level and
datacenter-level integration.

In this section we present the compilation support that au-
tomatically generates accelerators from user-written functions
in high-level programming languages such as C/C++. We first
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introduce the modern commercial high-level synthesis (HLS)
tool and illustrate the challenges of its programming model to
generate high-performance accelerators in Section III-A. To
solve these challenges, we present the Merlin compiler frame-
work [63], [64] along with a general architecture template
for automated design space exploration in Section III-B and
Section III-C, respectively. Finally, in Section III-D, we show
that special architecture templates, such as systolic array [65],
can be incorporated into the Merlin compiler to achieve much
higher performance for targeted applications (in this case for
deep learning).

A. Challenges of Commercial High-Level Synthesis Tools
In recent years, the state-of-the-art commercial HLS tools,

Xilinx Vivado HLS [66](based on AutoPilot [17]), SDAc-
cel [50] and Intel FPGA SDK for OpenCL [67], have been
widely used to fast prototype user-defined functionalities in
C-based languages (e.g., C/C++ and OpenCL) on FPGAs
without involving register-transfer level (RTL) descriptions.
In particular, for the OpenCL based flow, it provides a set
of APIs on the host (CPU) side to abstract away the un-
derlying implementation details of protocols and drivers to
communicate with FPGAs. On the kernel (FPGA) side, the
tool compiles a user input C-based program with pragmas to
the LLVM intermediate representation (IR) [68] and performs
IR-level scheduling to map the accelerator kernel to the
FPGA. Although these HLS tools indeed improve the FPGA
programmability (compared to RTL based design metholody),
they are still facing some challenges.
Challenge 1: Tedious OpenCL routine. The OpenCL pro-
gramming model for an application host requires the program-
mer to use OpenCL APIs to create an OpenCL context, load
the accelerator bitstream, specify CPU-FPGA data transfer,
configure accelerator interfaces, launch the kernel, and collect
the results. For example, a kernel with two input and one
output buffers as its interface will require roughly 40 code
statements with OpenCL APIs in the host program. Clearly, it
is too tedious to be done manually by programmers.
Challenge 2: Impact of code transformation on performance.
The input C code matters a lot to the HLS synthesis result.
For example, the HLS tool always schedules a loop with a
variable trip-count to be executed sequentially even if it does
not have carried dependency. However, in this case, applying
loop tiling with a suitable tiled size could let the HLS tool
to generate multiple processing elements (PEs) and schedule
them to execute tasks in parallel. As a result, heavy code
reconstruction with hardware knowledge is usually required
for designers to deliver high-performance accelerators, which
creates substantial learning barrier for a typical software
programmer.
Challenge 3: Manual design space exploration (DSE). Fi-
nally, assuming the C program has been well reconstructed,
the modern HLS tools further require designers to specify
the task scheduling, external memory access, and on-chip
memory organization using a set of pragmas. This means that
designers have to dig into the generated design and analyze its
performance bottleneck, or even use trial-and-error approach to
realize the best position and value for pragmas to be specified.

B. The Merlin Compiler

To address these challenges and enable software program-
mers with little circuit and microarchitecture background to
design efficient FPGA accelerators, the researchers in CDSC
developed CMOST (Customization, Mapping, Optimization,
Scheduling and Transformation) [69], a push-bottom source-
to-srouce compilation and optimization framework, to generate
high-quality HLS friendly C or OpenCL from fairly generic
C/C++ code with minimal programmer intervention. It has
been further extended by Falcon Computing Solutions [70]
to become a commercial strength tool named the Merlin
compiler [63], [64]. The Merlin compiler is a system-level
compilation framework that adopts an OpenMP-like [71] pro-
gramming model—i.e., a C-based program with a small set
of pragmas to specify the accelerator kernel scope and task
scheduling.

Merlin compiler componentsInput/Output files

User C/C++ program

Program Modeling Kernel Code Transformation Commercial Design Flow

FPGA bitstreamHost binary

Host Code in C/C++/OpenCL

Program Analysis Interface Generation

Existing components

Kernel Code in C/C++/OpenCL

Transformation library

Frontend Backend

Fig. 10: The Merlin Compiler execution flow

Figure 10 presents the Merlin compiler execution flow. It
leverages the ROSE compiler infrastructure [72] and polyhe-
dral framework [73] for abstract syntax tree (AST) analysis
and transformation. The front end stage analyzes the user
program and separates host and computation kernel. It then
analyzes the data transfer and inserts necessary OpenCL APIs
to the host code so that Challenge 1 can be eliminated. In addi-
tion, the kernel code transformation stage performs source-to-
source code transformation according to user-specified prag-
mas, as shown in Table II. Note that the Merlin compiler
will perform all necessary code reconstructions to make a
transformation effective. For example, when performing loop
parallelism, the Merlin compiler not only tiles and unrolls
a loop but also conducts memory partitioning for the sake
of avoiding bank conflict [26]. This approach largely address
Challenge 2 as it allows the programmers to use some simple
pragmas to specify the code transformation without consid-
ering any underlying architecture issues. After both the host
and kernel code are prepared, the back end stage launches the
commercial HLS tool to generate the host binary as well as
FPGA bitstream.

TABLE II: Kernel Pragmas of Merlin Compiler
Transformation Target Parameters Description

Data tiling Loop tilesize=S Tile the loop and create on-chip
buffers to cache the data with size S.

Example: #pragma Accel data tiling tilesize=16
Memory
Coalescing

Buffer bitwidth=b Pack DRAM buffer to b bits.
Example: #pragma Accel bitwidth variable=buf factor=512

Pipeline Loop N/A Create a coarse- or fine-grained
pipeline (dataflow).

Example: #pragma Accel pipeline

Parallelism Loop factor=N Tile the loop and create N
processing elements (PEs).

Example: #pragma Accel parallel factor=4
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Moreover, the Merlin compiler can further improve the
FPGA programmability by making ”semi-automatic” design
optimization : instead of manually reconstructing the code to
make one optimization operation effective, programmers now
can simply place a pragma and let the Merlin compiler do
the necessary changes. The ongoing work includes developing
an automated DSE framework that leverages reinforcement
learning algorithms to efficiently explore the design space [74]
for code transformation. This will fully address Challenge 3.

Given the total flexibility of FPGA designs, the accelerator
design space is immense. One way to manage the search
complexity is to use certain architecture templates as a guide
when appropriate. We shall discuss two architecture template
in the next two sections.

We also observe and summarize some common compu-
tational patterns for most cases. Accordingly, we develop a
general architecture template [75], which we will present in
the next subsection, to rapidly identify the optimal design point
for the case that can be fit in.

C. Support of CPP Architecture

The Merlin compiler is particularly suitable for the Compos-
able, Parallel and Pipeline (CPP) architecture [75], as shown
in Figure 11. Many designs map well to the CPP architecture,
which facilitates the high-performance accelerator design with
the following features:
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Fig. 11: The Example of CPP Architecture

(1): Coarse-grained pipeline with data caching. The overall
CPP architecture consists of three stages: load, compute
and store. The user-written kernel function only corre-
sponds to the compute module instead of defining the entire
accelerator. The inputs are processed block by block, i.e.,
iteratively loading a certain number of sequence pairs into on-
chip buffers (Stage load) while the outputs are stored back
to DRAM (Stage store). Different blocks are processed in a
pipelined manner so that off-chip data movement only happens
in the load and store stages, leaving the data accesses of
computation completely on chip.
(2): Loop scheduling. The CPP architecture maps every loop
statement presented in the computation kernel function to
either 1) a circuit that processes different loop iterations in
parallel, 2) a pipeline where the loop body corresponds to
the pipeline stages, or 3) recursive composition of 1) and 2).

Such a regular structure allows us to effectively search for the
optimally solution.
(3): On-chip buffer reorganization. In the CPP architecture,
all on-chip BRAM buffers are partitioned to meet the port
requirement of parallel circuits, where the number of partitions
of each buffer is determined by the duplication factor of the
parallel circuit that connects to the buffer.

We note that the CPP architecture is general enough to cover
broad classes of applications. Specifically, CPP architecture is
applicable as long as the computational kernel is synthesizable
and ”cacheable”, i.e. the input data can be partitioned and
processed block by block. Any Map-Reduce [76] or Spark [44]
programs fall into this category. For example, we could apply
the CPP architecture to more than 80% of Machsuite [77]
benchmarks. But computational kernels that have extensive
random accesses to a large memory footprint, such as the
breadth-first search (BFS) algorithm or page-rank algorithm
algorithm of large graphs, are not suitable for the CPP archi-
tecture.

One of the most important advantages of having the CPP
architecture is that we can define a clear design space and
derive a set of analytical models to quantify the performance
and resource utilization. It makes the automatic design space
exploration practical. In [75], we develop several pruning
strategies to reduce the design space so that it can be ex-
haustively searched in minutes. The evaluation result shows
that our automatic DSE achieves on average a 72× speedup
and 260.4× energy improvement for a broad class of compu-
tation kernels compared to the out-of-box synthesis results by
SDAccel [50].

D. Support of Systolic Array Architecture for Deep Learning

Systolic array [65] is another architecture template sup-
ported by the Merlin compiler. The general systolic array
support is still under study. Our initial focus is to support
the design of convolutional neural network (CNN) accelerator
with systolic array.

CNN is one of the key algorithms for the deep learning
applications, ranging from image/video classification, recogni-
tion, and analysis to natural language understanding, advances
in medicine, and more. The core computation in the algorithm
can be summarized as a convolution operation on the multiple
dimensional arrays. Since the algorithm offers the potential
of massive parallelization and extensive data reuse, FPGA
implementations of CNN have seen an increased amount of
interest from academia [78]–[87]. Among these, systolic array
is proved to be a promising architecture [84], [88]. A systolic
array architecture is a specialized form of parallel computing
with a deeply pipelined network of PEs. With the regular
layout and local (nearest neighbour) communication, which is
suitable for large-scale parallelism on FPGAs with high clock
frequency.

In order to support systolic array architecture in the Merlin
compiler, we first implemented a high throughput systolic
array design template in OpenCL with parametrized PE and
buffer sizes. In addition, we defined a new pragma for pro-
grammers to specify the code segment, as shown in Code 1,
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where the loop bounds are the constants of a CNN layer
configuration. As a result, our goal is to map Code 1 to
the predefined template with the optimal performance. The
solution space is large due to the following degree of freedom
1) selecting three loops in Code 1 to map to 2-D systolic
array architecture with in-PE parallelism (note that some loops
cannot be mapped to the 2-D systolic architecture and we
developed necessary and sufficient conditions for mapping), 2)
selecting the suitable PE array shape to maximize the resource
efficiency and operating frequency, and 3) determining the
data reuse strategy under the on-chip resource constraint. The
detailed analysis of the design space can be found in [88].

Code 1: A Convolutional Layer with The Merlin Pragma
#pragma ACCEL systolic auto
for(o = 0; o < O; o++) // Output feature #
for(i = 0; i < I; i++) // Input feature #
for(c = 0; c < C; c++) // Feature column
for(r = 0; r < R; r++) // Feature row
for(p = 0; p < K; p++) // Kernel weight
for(q = 0; q < K; q++) // Kernel height
OUT[o][r][c] += W[o][i][p][q] *

IN[i][r+p][c+q];

Since all these design challenges and their interplay need
to be considered in a unified way to achieve a global optimal,
we develop a highly accurate analytical model (< 2% error
on average) to estimate the design throughput and resource
utilization given a design configuration. Furthermore, to reduce
the design space, we present two pruning strategies to prune
the design space while preserving the optimality. (i) We con-
sider the resource usage efficiency. Since the clock frequency
will not drop significantly even with high DSP utilization
due to the scalability of the systolic PE array architecture
we adopted, we can prune the design points with low DSP
utilization.

(ii) We consider the data reuse strategies. We know that
BRAM sizes in the implementation are always rounded up
to the power of two, so we prune the design space by only
exploring the power-of-two data reuse strategies. The pruned
design space of data reuse strategies can still cover the optimal
solution in the original design space because 1) our throughput
object function is a monotonic non-decreasing function of the
BRAM buffer size, and 2) BRAM utilization is the same
as another strategy whose values have the same rounding
up the the power of two. By applying the pruning on the
data reuse strategies, the design space reduces exponentially
so that we are able to perform an exhaustive search to find
the best strategy and result in an additional 17.5× saving
on the average search time for AlexNet convolutional layers.
In fact, our DSE implementation is able to exhaustively
explore the pruned design space with the analytical model in
several minutes, which was several hundreds of hours when
exploring the full design space. Evaluation results show that
our design achieves up to 1171 Gops on Intel Arria 10 with
full automation [88].

We would like to point out that although many accel-
erator design efforts in the industry are still done using
RTL programming for performance optimization, as such the
database acceleration effort at Baidu [89] and the deep learning

acceleration effort at Microsoft [90], we believe that the move
to high-level programming language based accelerator designs
is inevitable, especially when the FPGAs are introduced in the
public clouds. The potential user base for FPGA designs is
much larger. Our goal is to support high-level programming
flow to “democratize customizable computing”.

IV. RUNTIME SUPPORT

After accelerators being developed using the compilation
tool, they need to be integrated with the applications and
deployed onto computing servers or datacenters with runtime
support.

Modern big data processing systems, such as Apache
Hadoop [76] and Spark [44], have evolved to an unprecedented
scale. As a consequence, cloud service providers, such as
Amazon and Microsoft, have expanded their datacenter infras-
tructures to meet the ever-growing demands for supporting big
data applications. One key question is: How can we easily
and efficiently deploy FPGA accelerators into state-of-the-
art big data computing systems like Apache Spark [44] and
Hadoop YARN [91]? To achieve this goal, both programming
abstractions and runtime support are needed to make these
existing systems programmable to FPGA accelerators.

A. Programming Abstraction

In this subsection, we present the Blaze framework to
provide accelerator-as-a-service [92] (see Section II-B1 for
the motivation), which provides programming abstraction and
runtime support for easy and efficient FPGA (and GPU as
well) deployments in datacenters. To provide a user-friendly
programming interface for both application developers and
accelerator designers, we abstract accelerators as software
libraries so that application developers can use the hardware
accelerators as if they are using software code while accel-
erator designers can easily package their design to a shared
library.

1) Application Interface: The Blaze programming interface
for user applications is designed to support accelerators with
minimal code changes. To achieve this, we extend the Spark
RDD to AccRDD which supports accelerated transformations.
Blaze is implemented as a third-party package that works with
the existing Spark framework3 without any modification of
Spark source code. Thus, Blaze is not specific to a particular
version of Spark. We explain the usage of AccRDD with an
example of logistic regression shown in Listing 2.

In Listing 2, training data samples are loaded from a file and
stored to an RDD points, and are used to train weights
by calculating gradients in each iteration. To accelerate the
gradient calculation with Blaze, first the RDD points needs
to be extended to AccRDD train by calling the Blaze
API wrap. Then an accelerator function, LogisticAcc,
can be passed to the .map transformation of the AccRDD.
This accelerator function is extended from the Blaze inter-
face Accelerator by specifying an accelerator id and an

3Blaze also supports C++ applications with similar interfaces, but we will
mainly focus on Spark applications in this paper.
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optional compute function for the fall-back CPU execution.
The accelerator id specifies the desired accelerator service,
which in the example is “LRGradientCompute.” The fall-back
CPU function will be called when the accelerator service is
not available. This interface is provided with fault-tolerance
and portability considerations. In addition, Blaze also supports
caching for Spark broadcast variables to reduce JVM-to-FPGA
data transfer.

Code 2: Blaze application example (Spark Scala)
val points = sc.textFile(filePath).cache()
val train = blaze.wrap(points)
for (i <- 0 until ITERATIONS) {
bcW = sc.broadcast(weights)
val gradients = train.map(

new LogisticAcc(bcW) ).reduce(a + b)
weights -= gradients

}
class LogisticAcc(w: Broadcast_var[V])

extends Accelerator[T, U] {
val id: String = "LRGradientCompute"
def call(p: T): U = {
localGradients.compute(p, w.value)

}
...

}

The application interface of Blaze can be used by library
developers as well. For example, Spark MLlib developers
can include Blaze-compatible codes to provide acceleration
capabilities to end users. With Blaze, such capabilities are
independent of the execution platform. When accelerators are
not available, the same computation will be performed on
CPU. In this case, accelerators will be totally transparent to
the end users. In our evaluation, we created several implemen-
tations for Spark MLlib algorithms such as logistic regression
and K-Means using this approach.

2) Accelerator Interface: For accelerator designers, the
programming experience is decoupled with any application-
specific details. An example of the interface implementing the
“LRGradientCompute” accelerator is shown in Listing 3.

Code 3: Blaze accelerator example (C++)
class LogisticTask : public Task {
public:
LogisticTask(): Task(NUM_ARGS)
// overwrite the compute function
virtual void compute() {
int num_elements = getInputLength(...);
double *in = (float*)getInput(...);
double *out = (float*)getOutput(...);
// perform computation
...

}
};

Our accelerator interface hides details of FPGA accelerator
initialization and data transfer by providing a set of APIs.
In this implementation, for example, the user inherits the
provided template, Task, and the input and output data can
be obtained by simply calling getInput and getOutput
APIs. No explicitly OpenCL buffer manipulation is necessary
for users. The runtime system will prepare the input data and
schedule it to the corresponding task. The accelerator designer

NAM
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Fig. 12: Node accelerator manager design to enable FPGA accelera-
tors as a service (AaaS).

can use any available programming framework to implement
an accelerator task as long as it can be integrated with an
interface in C++.

B. Node-Level Runtime Management

Blaze facilitates Accelerator-as-a-service (AaaS) in the
Node Accelerator Manager (NAM) through two levels of
queues: task queues and platform queues. The architecture
of NAM is illustrated in Figure 12. Each task queue is
associated with a “logical accelerator”, which represents an
accelerator library routine. When an application task requests
a specific accelerator routine, the request is put into the
corresponding task queue. Each platform queue is associated
with a “physical accelerator”, which represents an accelerator
hardware platform such as an FPGA board. The tasks in task
queue can be executed by different platform queues depending
on the availability of the implementations. For example, if
both GPU and FPGA implementations of the same accelerator
library routine are available, the task of that routine can be
executed on both devices.

This mechanism is designed with three considerations: 1)
application-level accelerator sharing, 2) minimizing FPGA
reprogramming, and 3) efficient overlapping of data transfer
and accelerator execution to alleviate JVM-to-FPGA overhead.

In Blaze, accelerator devices are owned by NAM rather than
individual applications, as we observed that in most big-data
applications, the accelerator utilization is less than 50%. If the
accelerator is owned by a specific application, then much of
the time it will be spent in idle, wasting the FPGA resource and
energy. The application-level sharing inside NAM is managed
by a scheduler that sits between application requests and task
queues. Our initial implementation is a simple first-come-first-
serve scheduling policy. We leave the exploration of different
policies to future work.

The downside of providing application sharing is the ad-
ditional overheads of data transfer between the application
process and NAM process. For latency-sensitive applications,
Blaze also offers a reservation mode where the accelerator
device is reserved for a single application, i.e., a NAM instance
will be launched inside the application process.

The design of the platform queue focuses on mitigating
the large overhead in FPGA reprogramming. For a processor-
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based accelerator such as GPU to begin executing a different
“logical accelerator,” it simply means loading another program
binary, which incurs minimum overhead. With FPGA, on
the other hand, the reprogramming takes much longer (can
be 1∼2 seconds). Such a reprogramming overhead makes it
impractical to use the same scheme as the GPU in the runtime
system. In Blaze, a second scheduler sits between task queues
and platform queues to avoid frequent reprogramming of the
same FPGA device. Its scheduling policy is similar to the
GAM scheduling to be presented in the next subsection.

CPU-FPGA Co-Management. In our initial Blaze runtime,
after the computation-bound kernel is offloaded to the ac-
celerators, the CPU stays idle, which wastes the computing
resources. To address this issue, we further propose a dataflow
execution model and an interval-based scheduling algorithm to
effectively orchestrate the computation between multiple CPU
cores and the FPGA on the same node, which greatly improves
the overall system resource utilization. In our case study on
genome data in-memory sorting, we find that our adaptive
CPU-FPGA co-scheduling achieves 2.6x speedup over the 12-
threaded CPU baseline [93].

C. Datacenter-Level Runtime Management

Recall that the Blaze runtime system integrates with Hadoop
YARN to manage accelerator sharing among multiple applica-
tions. Blaze includes two levels of accelerator management. A
global accelerator manager (GAM) oversees all the accelerator
resources in the cluster and distributes them to various user
applications. Node accelerator managers (NAMs) sit on each
cluster node and provide transparent accelerator access to a
number of heterogeneous threads from multiple applications.
After receiving the accelerator computing resources from
GAM, the Spark application begins to offload computation to
the accelerators through NAM. NAM monitors the accelerator
status, handles JVM-to-FPGA data movement and accelerator
task scheduling. NAM also performs a heartbeat protocol with
GAM to report the latest accelerator status.

Blaze execution flow. During system setup, the system
administrator can register accelerators to NAM through APIs.
NAM reports accelerator information to GAM through heart-
beat. At runtime, user applications request containers with
accelerators from GAM. Finally during application execution
time, user applications can invoke accelerators and transfer
data to and from accelerators through NAM APIs.

Accelerator-centric scheduling. In order to solve the global
application placement problem considering the overwhelm-
ing FPGA reprogramming overhead, we propose to manage
the logical accelerator functionality, instead of the physical
hardware itself, as a resource to reduce such reprogramming
overhead. We extend the label-based scheduling mechanism in
YARN to achieve this goal: instead of configuring node labels
as ‘FPGA,’ we propose to use accelerator functionality (e.g.,
‘KMeans-FPGA,’ ‘Compression-FPGA’) as node labels. This
helps us to differentiate applications that are using the FPGA
devices to perform different computations. We can delay the
scheduling of accelerators with different functionalities onto
the same FPGA to avoid reprogramming as much as possible.

Different from the current YARN solution, where node labels
are configured into YARN’s configuration files, node labels
in Blaze are configured into NAM through command-line.
NAM then reports the accelerator information to GAM through
heartbeats, and GAM configures these labels into YARN.

Our experiment results on a 20-node cluster with 4 FPGA
nodes show that static resource allocation and the default
resource allocations (i.e., YARN resource scheduling policy)
are 27% and 22% away from theoretical optimal results, while
our proposed runtime is only 9% away from the optimal
results.

At this point, the use of GAM is limited, as the public
cloud providers do not yet allow multiple users to share
FPGA resources. The NAM is very useful for accelerator
integration, especially with a multi-threaded host program
or to bridge different level of programming abstraction (e.g.
from the JVM to FPGAs). For example, the NAM is used
extensively in the genomic acceleration pipeline developed by
Falcon Computing [70].

V. CONCLUDING REMARKS

This paper summarizes research contributions from the
decade-long research of CDSC on customizable architectures
at chip level, server-node level, and datacenter level, as well
as the compilation and runtime support. Compared to classical
von Neumann architecture with instruction-based temporally
multiplexing, these architectures achieve significant perfor-
mance and energy efficiency gain with extensive use of cus-
tomized accelerators via spatial computing. They are gaining
greater importance as we come to near the end of Moore’s
Law scaling. There are many new research opportunities.

With Google’s success of TPU chip for deep learning
acceleration [94], we expect a lot more activities on chip-level
ARA in the coming years. The widely used GPUs are in fact
a class of important and efficient chip-level accelerators for
SIMD and SPMD workloads, which may further refine and
specialize to certain application domains (e.g. deep learning
and autonomous driving).

FPGAs remain to offer a very good trade-off of flexibility
and efficiency. In order to compete with ASIC based accelera-
tors in terms of performance and energy efficiency, we suggest
FPGA vendors to consider two directions to further refine
the FPGA architectures: (i) include coarser-grain computing
blocks, such as SIMD execution units or CGRA-like struc-
tures, and (ii) simplify the clocking and I/O structures, which
were introduced mostly for networking and ASIC prototyping
applications. Such simplification will not only save the chip
area to accommodate more computing resources, but also has
the potential to greatly shorten the compilation time (which
is a serious shortcoming of existing FPGAs), as it will make
placement and routing a lot easier. Another direction is to
build efficient overlay architectures on top of existing FPGAs
to avoid the long compilation time.

In terms of compilation support, we see two promising
directions. On one hand, we further increase the level of
programming abstraction to support domain-specific languages
(DSLs), such as Caffe [87], [95] TensorFlow [96], Halide [97]
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and Spark [74]. In fact, these DSLs have initial supports
for FPGA compilation already and further enhancement is
ongoing. On the other hand, we shall consider specialized
architecture supports to enable better design space exploration
to achieve the optimal synthesis results. We have good success
with the support of stencil computation [28], [98], systolic
arrays [88], and the CPP (composable parallel and pipelin-
ing) architecture [75]. We hope to capture more computation
patterns and corresponding microarchiteture templates, and
incorporate them in our compilation flow.

Finally, we are adding the cost optimization as an important
metric in our runtime management tools of accelerator de-
ployment in datacenter applications [99], and also considering
the extension of more popular runtime systems, such as
Kubernetes [100] and Mesos [101] for acceleration support.
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