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Due to the limited scaling of general-purpose CPUs, FPGAs
have emerged as an attractive alternative to accelerate big data
applications due to their low power, high performance and energy
efficiency. In this paper we aim to answer one key question:
How should the multicore CPU and FPGA coordinate together to
optimize the performance of big data applications? To address the
above question, we conduct a step-by-step case study on CPU and
FPGA co-optimization for in-memory Samtool sorting in genomic
data processing, which is one of the most important big data
applications for personalized healthcare. We find that a straight-
forward integration of an FPGA accelerator into the Samtool
sorting only achieves marginal system throughput improvement
over the software baseline running on a 12-core CPU. Therefore
we propose a dataflow execution model to effectively orchestrate
the computation between the multi-threaded CPU and FPGA,
which demonstrates 2.6x speedup in our experiments.

Keywords: Reconfigurable hardware, Scheduling and Task
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I. INTRODUCTION

The past decade has witnessed CPU core scaling coming
to an end due to dark silicon limitations. At the same time,
modern big data processing systems have evolved to an un-
precedented scale. Cloud service providers, such as Amazon,
Google and Microsoft, are seeking new system solutions
to meet the ever-growing processing demands. Customized
accelerators, such as GPUs and FPGAs, have gained increasing
attention due to their low power, high performance and energy
efficiency.

Meanwhile, the problem of efficiently processing such big
data has attracted a lot of attention from both academia
and industry. To fit the data into memory and to leverage
multiple cores and servers, today’s big data applications tend to
distribute the datasets into multiple partitions where partitions
can be processed in parallel [1].

Whereas a data-partition approach can accelerate big data
applications on multicore CPUs, using FPGA accelerators is
a more attractive solution since it helps to address the limited
scaling of general-purpose CPUs and provides energy-efficient
accelerators for integration in data centers. However, most
prior studies on FPGA acceleration mainly focused on the
FPGA accelerator design itself and did not consider efficient
CPU and FPGA co-scheduling, which we find can be the key
to the performance of such applications.

In this work, we focus on accelerating compression, a
widely used routine in data center workloads, perform an in-
depth case study on integrating an FPGA compression accel-
erator into a genomic data processing application, and aim to
answer the following question: How should the multicore CPU

and FPGA coordinate together to optimize the performance of
big data applications?

Through our experiments we find that although we can
get a high speedup on kernel computation by offloading the
computation to FPGAs, the overall application speedup we can
achieve may be very limited when comparing with the multi-
threaded CPU implementation. The major reason is that the
current application execution model fails to fully utilize system
resources such as CPU cores and I/O. More specifically, when
computation is offloaded to the FPGA, the CPU threads wait
for the accelerator to finish and thus are idled.

Therefore, we propose a dataflow execution model and an
interval-based scheduling algorithm to effectively orchestrate
the computation between multiple CPU cores and the FPGA,
which greatly improves the overall system resource utiliza-
tion. Our experiments show that for pure CPU execution,
the dataflow execution model provides a similar performance
as the original data-parallel execution model. However, the
dataflow execution model outperforms the data-parallel exe-
cution model when an FPGA is integrated into the system.

II. CPU-FPGA CO-SCHEDULING 1

A. Dataflow Execution Model

To make use of the CPU cycles that are saved from the
FPGA acceleration and to better utilize I/O, we propose to use
a dataflow execution model. Each application is divided into
several stages. Each stage can have multiple tasks that leverage
data-level parallelism and all the stages are connected through
in-memory data queues and work in a pipelined fashion.

To execute a dataflow program, the number of threads
allocated to each stage needs to be decided. Slower stages
deserve more CPU threads, while faster stages need fewer
CPU threads. Besides the computation complexity of the stage,
factors like disk bandwidth and data format play important
roles in determining a stage’s performance and thus the
efficiency of the entire dataflow. For example, SSDs typically
provide a higher bandwidth than HDDs; therefore, if the input
data resides on SSD instead of HDD, the performance of
the read stage will be improved. Finally if computation is
offloaded to FPGA, CPU will be less utilized and thus other
CPU-sensitive stages (like sort) may run faster. Therefore, it is
nontrivial to determine the best thread allocation for a dataflow
program.

1Prior work on task and thread scheduling on heterogeneous systems can
be found in [2].
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B. Proposed Runtime Thread Allocation Strategy

At runtime, we profile the CPU utilization (utili) of stage i
every small period of time. It is calculated as the actual thread
time spent on each task divided by the total thread time of all
tasks in this stage. Time that is spent on reading data from the
input queue (dequeue) and writing data to the output queue
(enqueue) is not counted into the actual thread time. Therefore,
a high util represents that a stage is making high use of its
allotted CPU resource, while a small util represents that a
stage might be wasting time on dequeue/enqueue and thus is
not making full use of its allotted CPU resource.

Our runtime adaptive thread allocation algorithm monitors
the CPU utilization of each stage, and makes adjustments
in thread allocation every period of time which moves CPU
threads from the stages with a lower util to the stages with
a higher util. Denote the number of threads allocated to the
faster stage as nf , and the CPU utilizations of the faster stage
and the slower stage as uf and us. uf is smaller than us since
the faster stage should have lower CPU utilization. Empirically
by moving threads from the faster stage to the slower stage, we
expect that the CPU utilization of the faster stage can increase
to uf+us

2 . Therefore the target number of threads for the faster
stage is dnf · uf/(uf+us

2 )e. The number of threads that are
moved from a faster stage to a slower stage, δ, as follows:

δ = nf − dnf · uf/(
uf + us

2
)e, (1)

The interval of thread re-allocation should be long enough
so that the current thread allocation policy will take effect.
This is due to the fact that when we decrease the number of
threads for a stage, we wait for the allocated threads from the
previous iteration to finish instead of killing them. Therefore
the CPU utilization statistic that is collected right after thread
re-allocation may not represent the effectiveness of the new
thread allocation policy. Empirically the interval to sample
CPU utilization approximately equals to the task time and
thread reallocation is executed when tens of tasks have finished
in the slowest stage.

III. CASE STUDY

Throughout this section we use an example of the sort
routine in Samtools [3] to illustrate the common issues in
integrating FPGA solutions into multi-threaded CPU compu-
tations, present our observations and experiment results.

A. Samtool In-Memory Sorting

Samtool sorting takes a genomic sequencing file as an input,
sorts read alignment by leftmost coordinate or by read name,
and finally outputs the sorted read alignments to a compressed
file, so that latter processing tools can easily identify the
duplicate read alignments in the genome. Note that the size
of input sequencing file is typically on the order of several
hundreds of gigabytes. Therefore, it cannot fit into the CPU
memory and external sorting algorithms are used.

Figure 1 presents an overview of the algorithm used in
Samtool sorting [3]. First, it sequentially reads the on-disk
file in either normal SAM (Sequence Alignment/Map) text
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Fig. 1: An overview of the sort routine in Samtools.

or block-compressed BAM (Binary Alignment/Map) format
into CPU memory. Second, it splits the read alignments into
multiple partitions, so that each partition can be sorted in
memory, compressed, and written to a small temporary sorted
file in parallel. Compression is applied at this stage for each
data block (e.g., 64KB size) within the partition before writing
to the disk so as to save storage space and bandwidth. In
addition, a cyclic redundancy check (CRC) code is computed
on each original uncompressed data block, which will be
used to detect file errors when the compressed file is read
in the future. Third, all temporary sorted files will be merged
together into a single sorted BAM file using external merge
sort, which is mainly disk bound. In this paper we focus on the
optimization of the first two stages, sequential read and parallel
partition processing, which occupy around 50% execution time
of the entire Samtool sorting. We call these two stages in-
memory Samtool sorting. 2

B. Experiment Setup and Initial Profiling

The software in-memory Samtool sorting [3] runs on a 12-
core Intel Xeon CPU E5-2620 (@2.40GHz) with CentOS 7.2.
This server has 128GB memory and 500GB SSD. A power
meter is attached to the power outlet of the CPU server to
measure the system power. The input data samples used in
the experiments are the high-coverage exome samples from
the 1000 Genome project.3 For illustration purposes, we use
a 27.6 GB SAM file chopped from the first segment of the
third exome sample throughout this paper unless otherwise
specified. To generate the input SAM files for Samtool sorting,
we use bwa-mem [4], [5] to align these input exome samples.

Based on our profiling on the single-thread in-memory
Samtool sorting, the compression and CRC algorithms, which
are well suited for FPGA acceleration, occupy around 45%
of the execution time. This motivates us to design an FPGA
accelerator for compression and CRC. We design our accel-
erator with Vivado HLS and SDAccel (v2016.1). The FPGA
board is Xilinx Kintex UltraScale KU115.

C. Accelerator Design and Performance

There are already several studies that accelerate compres-
sion and CRC on FPGAs [6], [7], [8], [9]. We implement
an FPGA compression and CRC accelerator design similar
to these studies. The major difference from these studies is

2Note that the term “in-memory sorting” here is not to be confused with
the concept that refers to embedding the computing cores into memory.

3 Data can be downloaded from:

• http://www.internationalgenome.org/data-portal/sample/NA12878
• http://www.internationalgenome.org/data-portal/sample/NA12892
• http://www.internationalgenome.org/data-portal/sample/HG01500
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that we design our accelerator in HLS, which is portable and
maintainable across different Xilinx FPGA platforms.

Our FPGA accelerator takes a byte array as input. It
computes the cyclic redundancy check (CRC) code of the input
array and produces a compressed byte array. The produced
CRC code is the same as the result from Linux crc32() in
zlib.h. According to HLS report, our FPGA accelerator can
process 16 bytes/cycle at 200 MHz, achieving a theoretical
peak bandwidth of 3.2 GB/s. The design occupies 12.6% LUT
and 4.9% FF on our KU115 board.

The measured performance of our accelerator kernel from
Xilinx OpenCL runtime is 2.8 GB/s. The gap between our
measured throughput and the theoretical throughput (3.2 GB/s)
is because the data transfer between FPGA DRAM and FPGA
kernel does not achieve a perfect pipeline initial interval (II)
that equals to 1, since each DRAM burst read/write includes
non-payload data overhead.

We test the compression ratio of our accelerator under the
Calgary Corpus dataset [10]. We are only able to achieve a
compression ratio of 1.73 (geometric mean) across the dataset,
lower than the previous work, but still at a comparable level.
The reason of a lower compression ratio is mainly due to the
history string matching loss when there are hash conflicts to
the same dictionary. Unlike RTL designs in [6] where double
clock frequency is used for hash table, in HLS we do not have
the flexibility of using different clocks in a single design.

We compare our compression throughput and ratio to two
recent studies [6], [7] and the single-core CPU version in Table
I. Although we see room to further optimize our accelerator
design (e.g., replacing some modules with RTL designs with
doubled frequency), we did not pursue along that direction
since its performance is already limited by the CPU-FPGA
data transfer bandwidth through the PCIe connection.

TABLE I: FPGA accelerator comparison.

Design theoretical and measured compression
throughput (GB/s) ratio

This work 3.2 / 2.8 1.73
Altera OpenCL [7] 2.8 / - 2.17
Microsoft RTL [6] 5.6 / - 2.09

CPU [6] - / 0.05 2.62

To the best of our knowledge, this is the first compression
(with CRC) design using Xilinx HLS.

D. FPGA Accelerator Integration with CPU

To handle efficient sharing of the FPGA among multi-
ple application threads, we leverage our Blaze runtime sys-
tem [11], which is an open-source project that offers acceler-
ator management at node-level and at cluster-level. At node-
level, the Blaze runtime system serves as an abstraction layer
between the application threads and the underlying FPGAs.
This additional layer maintains all information about tasks,
kernels, kernel arguments, and device data blocks, enabling
more sophisticated management (e.g., task queueing, thread-
level fairness, and automatic FPGA reconfiguration) than that
of the default OpenCL runtime.

We incorporate additional two considerations during ac-
celeration integration with CPU. The first consideration is
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Fig. 2: Concurrent read/write bandwidth between CPU and
FPGA through PCIe.

the data size for each CPU-FPGA communication through
the PCIe bus. Similar to [12], we measure the PCIe read
and write bandwidth using OpenCL APIs. The results are
presented in Figure 2 where we can see that the concurrent
read/write bandwidth increases as the payload size increases.
The original BAM file is in a block-compressed format, where
each uncompressed block has the maximum size of 64 KB at
which size the data transfer rates are below 1.0 GB/s. To solve
this problem, we redefined the maximum size of uncompressed
blocks in BAM format to 32 MB; at this size the data transfer
rate is much higher.

The second consideration is to reuse OpenCL memory ob-
jects. At OpenCL runtime, an OpenCL memory object is first
created and allotted to the kernel. Figure 2 demonstrates that
reusing OpenCL memory objects can increase the bandwidth
between host CPU and FPGAs. Therefore, we implement a
runtime OpenCL block reuse mechanism: Instead of releasing
the OpenCL memory objects from previous runs, we maintain
these objects in a lookup table as long as we do not run out
of device memory space. New memory object allocations will
first perform table lookups to see if there are already allotted
objects that are large enough to hold the current ones; failure
to find pre-allocated objects results in new memory objects
being allocated, and old memory objects being released if we
run out of space.

Compared to the CPU compression (with CRC) imple-
mentation, our FPGA implementation achieves 17.2x speedup
under the single-thread scenario, and achieves 3.3x speedup
in the 12-threaded scenario.

E. Performance of Samtool Sorting

Finally, Figure 3 summarizes the runtime breakdown for in-
memory Samtool sorting with and without FPGA acceleration.
During the in-memory sorting phase, data is first read into
memory. Then parallel threads are launched; each thread sorts
a chunk of data, compresses it and writes the data to a
file. When multiple threads are used, we do not add extra
synchronization among threads after sorting or compression.
Therefore, we cannot tell the exact time that is spent on
sorting, compression or file write; instead, the total time of
these three steps is reported in the figure.

Looking at Figure 3, we can see that in the single-
thread scenario, we achieve 17.2x speedup on the compres-
sion kernel by using the FPGA accelerator, 2.3x speedup
on ‘sort+compress+write’, and 67% overall performance im-
provement. Note that file write time increases slightly since



4

0.29 0.29 0.29 0.29 

0.19 0.19 

0.45 

0.03 

0.07 

0.09 

0.11 0.08 

0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1 thread 1 thread 
w/ FPGA 

12 threads 12 threads 
w/FPGA 

N
or

m
al

iz
ed

 T
im

e 

sort + compression + write write compression sort read 

Fig. 3: Normalized time for in-memory Samtool sorting.

our FPGA compression ratio is smaller than that of the CPU
baseline.

However, comparing the two rightmost columns in Figure 3
where 12 threads are used in the CPU baseline, we can
only observe 1.4x speedup on ‘sort+compress+write’. This
is because ‘sort’ and ‘compress’ are well-parallelized in this
baseline. The application performance is now limited by the
sequential read stage and there is a marginal of 8% overall
performance improvement by integrating the FPGA accelera-
tor into the system.

F. Parallelizing the Read Stage

Following today’s trends in big data processing, we first
partition our input SAM files into multiple smaller files so that
file read can be parallelized and IO bandwidth can be better-
utilized. Our experiments show that parallelizing the read stage
can improve the SSD performance by up to 3x in the SAM
file read stage.

G. Dataflow-Samtools

We model Samtool in-memory sorting using the proposed
dataflow execution model. We divide the entire application
into three stages: read, sort and compress + write. Data
between stages are organized using multi-input and multi-
output queues. In the experiment, 12 CPU threads are allocated
to these three stages and thread allocations are adjusted dy-
namically according to the strategy in Section II-B. We name
our dataflow implementation of Samtool sorting as Dataflow-
Samtool sorting.

1) Evaluation on Runtime Thread Allocation
To evaluate the effectiveness of runtime adaptive thread allo-

cation, we compare it to the static thread allocations, where we
explore the application’s latency under different static thread
allocations. We found that application latency of the best static
thread allocation and that of the worst static thread allocation
can differ by up to 5x. Compared to the best static thread
allocation that achieves the shortest application latency, we
found that the runtime adaptive thread allocation can provide
a performance very close (93%) to the best static allocation on
the CPU platform. Moreover, it can even outperform the best
static allocation on the CPU-FPGA platform. This is because
our runtime thread allocation strategy provides a more flexible
thread configuration than static allocations. For example, when
a stage finishes, its threads can be reallocated to other stages.

2) Comparison of Different Optimizations
We compare the performance of different optimizations over

the original 12-thread in-memory Samtool sorting in Figure 4
which is denoted as SAM on SSD:
1. parallel read parallelizes the read stage using 6-

threads, which achieves and then executes the
sort+compression+write stage using 12 threads;

2. parallel read + FPGA is based on parallel read but uses
FPGA to perform compression;

3. dataflow is the 12-threaded CPU implementation of
Dataflow-Samtool;

4. dataflow + FPGA is the 12-threaded CPU implementation
of Dataflow-Samtool with FPGA.
There are several observations. First, dataflow does not out-

perform parallel read in the pure CPU case. The major reason
is that there is additional memory consumption in maintaining
data queues in the dataflow model which slows down the
memory system.

Second, dataflow + FPGA performs better than parallel read
+ FPGA. The major reason is that in dataflow + FPGA mode,
we are executing different stages of the job simultaneously
with both computation-intensive tasks and I/O intensive tasks
running in parallel. Therefore, I/O and compute resources can
be better utilized. While in parallel read + FPGA mode, we are
executing the tasks in a stage-by-stage fashion. CPU can be
idled during read stage and I/O can be idled during compute
stage, which is less efficient.

Finally, among all four optimizations, CPU-FPGA co-
optimized dataflow-Samtool achieves the best performance,
which is 2.64x faster than the original 12-thread Samtool
sorting.

IV. MORE CASE STUDIES

In this section we perform more experiments to evaluate our
dataflow execution model.

A. Performance for Different Datasets

We evaluate the application performance on three large
datasets, whose file sizes are 54.5 GB, 56.7 GB and 235.2 GB
respectively. The Samtools in memory sorting takes about half
an hour to finish on the CPU platform for the largest dataset.
Our dataflow Samtools with FPGAs can achieve speedup of
2.8x, 2.6x, and 2.5x on these three datasets respectively.

B. Changing Input format

We change the input format from SAM format to BAM
format where data is stored as compressed binary file. This
change indicates that input file size is reduced and decom-
pression is needed during read stage. Reading files in BAM
format is more computation-intensive than reading files in
SAM format. The results are presented in Figure 4 as BAM
on SSD. In this case dataflow + FPGA achieve the best
performance which is 2.62x better than the 12-threaded CPU
baseline.
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Fig. 4: Overall speedup and energy savings of different optimizations over original 12-thread Samtool in-memory sorting.

C. Changing Storage Type

We also test another case where the input resides on HDD
rather than SSD. Since parallel read on HDD is slower than
parallel read on SSD, the application is more disk-bounded.
Therefore overall we observe less speedup by using FPGA ac-
celerators. However among all the execution models, dataflow
execution with FPGA accelerator still performs the best (2.35x
speedup) as shown in BAM on HDD in Figure 4.

V. CONCLUSION

In this paper we conduct a case study on in-memory
Samtool sorting and aim to find the right strategy to coordinate
today’s multicore CPU and FPGA together to optimize the
performance of big data applications. To improve resource
utilization and system performance, we proposed a dataflow
execution model that combined data-level parallelism on mul-
ticore CPU, hardware specialization on FPGA, and pipeline
parallelism between CPU cores and FPGA. Accordingly, we
developed an adaptive runtime to effectively orchestrate the
computation between multiple cores and FPGA. Our experi-
mental results demonstrated that the dataflow execution model
is more accelerator-friendly than the data-parallel execution
model. Overall our CPU-FPGA coordination through the
dataflow execution model can achieve an average of 2.6x
system performance speedup over the original 12-thread in-
memory Samtool sorting.
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