
SQL2FPGA: Automated Acceleration of SQLQuery Processing on Modern
CPU-FPGA Platforms

ALEC LU, School of Engineering Science, Simon Fraser University, Canada

JAHANVI NARENDRA AGRAWAL∗, International Institute of Information Technology, India

ZHENMAN FANG, School of Engineering Science, Simon Fraser University, Canada

Today’s big data query engines are constantly under pressure to keep up with the rapidly increasing demand for faster processing of
more complex workloads. In the past few years, FPGA-based database acceleration efforts have demonstrated promising performance
improvement with good energy efficiency. However, few studies target the programming and design automation support to leverage
the FPGA accelerator benefits in query processing. Most of them rely on the SQL query plan generated by CPU query engines and
manually map the query plan onto the FPGA accelerators, which is tedious and error-prone. Moreover, such CPU-oriented query
plans do not consider the utilization of FPGA accelerators and could lose more optimization opportunities.

In this paper, we present SQL2FPGA, an FPGA accelerator-aware compiler to automatically map SQL queries onto the heterogeneous
CPU-FPGA platforms. Our SQL2FPGA front-end takes an optimized logical plan of a SQL query from a database query engine
and transforms it into a unified operator-level intermediate representation. To generate an optimized FPGA-aware physical plan,
SQL2FPGA implements a set of compiler optimization passes to 1) improve operator acceleration coverage by the FPGA, 2) eliminate
redundant computation during physical execution, and 3) minimize data transfer overhead between operators on the CPU and
FPGA. Furthermore, it also leverages machine learning techniques to predict and identify the optimal platform, either CPU or FPGA,
for the physical execution of individual query operations. Finally, SQL2FPGA generates the associated query acceleration code for
heterogeneous CPU-FPGA system deployment. Compared to the widely used Apache Spark SQL framework running on the CPU,
SQL2FPGA—using two AMD/Xilinx HBM-based Alveo U280 FPGA boards and Ver.2020 AMD/Xilinx FPGA overlay designs—achieves
an average performance speedup of 10.1x and 13.9x across all 22 TPC-H benchmark queries in a scale factor of 1GB (SF1) and 30GB
(SF30), respectively. While evaluated on AMD/Xilinx Alveo U50 FPGA boards, SQL2FPGA using Ver. 2022 AMD/Xilinx FPGA overlay
designs also achieve an average speedup of 9.6x at SF1 scale factor.

CCS Concepts: • Hardware→ Hardware accelerators; Hardware-software codesign; • Computer systems organization→
Reconfigurable computing; High-level language architectures.

Additional Key Words and Phrases: Big Data Analytics, Analytical Query Processing, HBM-based FPGA, High-Level Synthesis,
Compilation Framework

∗The work was done when Jahanvi was a Mitacs research intern at Simon Fraser University.

Authors’ addresses: Alec Lu, alec_lu@sfu.ca, School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC, Canada, V5A1S6;
Jahanvi Narendra Agrawal, jahanvi.agrawal@iiitb.ac.in, International Institute of Information Technology, 26/C, Electronic City Phase 1, Bangalore,
Karnataka, India, 560100; Zhenman Fang, zhenman@sfu.ca, School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC,
Canada, V5A1S6.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

ACM Reference Format:
Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang. 2024. SQL2FPGA: Automated Acceleration of SQL Query Processing on
Modern CPU-FPGA Platforms. ACM Trans. Reconfig. Technol. Syst. 1, 1, Article 1 (January 2024), 27 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

With today’s ever-growing scale of databases for big data analytics, query engines are struggling to keep up with the
rapidly increasing demand for faster processing of more complex workloads, especially for technology companies—such
as Amazon [20] and Alibaba [13]—whose business models are highly driven by customer data. Another trend in current
database systems is that more data is cached in memory instead of in storage, allowing one to two orders-of-magnitude
higher bandwidth between the data and the processor. Such technology trend brings significant speedup for traditional
transaction processing workloads. However, complex analytics operations such as join, aggregation, and expression
evaluation are becoming computation-bound in the CPU architecture.

Due to the power and utilization walls [9], there is a significant slowdown in CPU performance scaling in datacenters.
High-performance, energy-efficient, and fully customizable FPGA accelerators have attracted increasing attention
as strong candidates for accelerating query processing from both industry and academia. Several previous works
have achieved decent performance speedup and/or energy efficiency improvements by offloading compute-intensive
SQL operations onto FPGAs, where they explore the massive parallelism and highly customized architectures in
their FPGA accelerators. For example, with nearly 40% of the data analysis workload performed using SQL queries,
Baidu developed a suite of software-defined accelerators for SQL operations called SDA [18] and achieved up to a 55x
performance speedup over a 12-core CPU server when evaluated on query #3 of the TPC-DS benchmark suite [30].
More recently, to demonstrate FPGA acceleration in query processing, AMD/Xilinx developed an open-source library
of query acceleration overlays [37], which achieved an average performance speedup of 26x on TPC-H queries [31]
over PostgreSQL [23] running on the CPU.

However, FPGA acceleration does not come for free and typically requires substantial manual programming efforts
during development. For example, even with the pre-designed query acceleration overlays, the query acceleration
demo code (Ver.2020) from AMD/Xilinx database library [37] takes more than 500 lines of host code (mainly on the
configuration and invocation of the undocumented query acceleration overlays) to manually accelerate each of the
22 TPC-H queries on average. This weak programmability and automation support for FPGAs has been a prevailing
barrier for software programmers to develop highly efficient FPGA accelerators and/or effectively integrate them into
the existing query processing workflow [3, 10]. As a consequence, for example, AMD/Xilinx no longer provides such
manual demo code for TPC-H queries in their newer database library versions (e.g., latest Ver.2022). Unfortunately, few
studies target the programming and compilation support to automatically map SQL queries onto the FPGA accelerators,
as will be discussed in Section 5.1.

In this paper, we propose SQL2FPGA, an automatic compilation framework that translates and maps SQL queries to
the heterogeneous CPU-FPGA acceleration platform. To avoid the overwhelming partial reconfiguration overhead on
FPGAs (e.g., our experiments show a ∼4.8s partial reconfiguration time on Alveo U280, while the average execution time
of our queries is only ∼5.2s), in this paper, we leverage the AMD/Xilinx open source query acceleration overlays [37]
and automatically map SQL queries onto them. Note that this paper does not optimize the query accelerators, but
focuses on the compilation support, including query plan optimizations, to automatically compile SQL queries onto
existing well-tuned hardware accelerators on FPGAs, i.e., AMD/Xilinx open-source query acceleration overlays.
Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 3

To ensure the portability of our SQL2FPGA design, we establish a big data engine-agnostic query plan representation
such that our optimizations can be leveraged and ported across different big data engine front-ends. To further improve
the performance of the CPU-FPGA hybrid query execution, we implement a set of FPGA-aware compiler optimization
passes. First, we improve the query operator acceleration coverage on FPGAs by implementing two optimization passes
1) substituting string-type data with an integer-type row id to overcome the accelerator design constraint of having
a 32-bit integer datapath and extend more operation offloading to FPGA accelerator; 2) transforming non-natively
supported join operations into accelerator supported join operations. Second, to reduce redundant computation, we
implement a compiler optimization to merge repeating operations. Third, to optimize for more efficient data transfers,
we propose 1) an accelerator fusion optimization to minimize the expensive data exchange between CPU main memory
and FPGA device memory; and 2) a join reordering strategy to minimize the intermediate data transfers between the
compute-intensive join operations. To identify the optimal platform, either CPU or FPGA, for the physical execution of
individual query operations, we utilize machine learning techniques. We train multiple decision tree based classifiers
to discern performance patterns based on diverse configurations, including variations in 1) input tables, 2) input and
output data sizes, and 3) operation complexity.

We evaluate our SQL2FPGA on all 22 queries from the widely used TPC-H benchmark suite [31] with the AMD/X-
ilinx Alveo U280 [38] and Alveo U50 [39] datacenter FPGA boards, using AMD/Xilinx database query acceleration
overlays [37] (Ver.2020.1 and Ver.2022.1). Compared to Apache Spark SQL execution on CPU, under SF1 and SF30,
SQL2FPGA using 2020.1 overlays achieves average speedups of 10.1x and 13.8x across all 22 TPC-H queries; and under
SF1 (note 2022.1 overlays does not support SF30), SQL2FPGA using 2022.1 overlays achieves average speedups of 9.8x
across all 22 TPC-H queries. Compared with AMD/Xilinx well-optimized manual host code, on average, SQL2FPGA us-
ing 2020.1 overlays (note there is no optimized manual host code for 2022.1) incurs around 7% overhead for SF1 dataset
and is nearly 1% faster for SF30 dataset for accelerating the 22 TPC-H benchmark queries.

In summary, our paper makes the following contributions:

1. A general framework called SQL2FPGA that enables automatic compilation of SQL queries to be accelerated on the
heterogeneous CPU-FPGA platform. SQL2FPGA is open-sourced at: https://github.com/SFU-HiAccel/SQL2FPGA.

2. A set of hardware-aware compiler optimization passes to further improve the performance of the hybrid CPU-FPGA
query acceleration.

3. A set of machine learning based classifiers to optimize the platform selection for the physical execution of query
operations.

4. A quantitative evaluation and analysis of the experimental results on all 22 TPC-H benchmark queries on two
database overlay versions on AMD/Xilinx U280 and U50 FPGAs.

The rest of this paper is organized as follows. Section 2 gives background on SQL query processing, discusses the
opportunities and challenges to accelerate query processing using FPGA. Section 3 presents SQL2FPGA, including its
overall compilation flow, unified engine-agnostic query plan representation, overlay-based FPGA accelerator designs,
query plan optimizations, and machine learning techniques for choosing execution platform. Section 4 presents and
analyzes our experimental results. Section 5 summarizes the related work in accelerating SQL query processing using
specialized hardware platforms: FPGA, ASIC, and GPU. Lastly, Section 6 presents our concluding statements and
discusses future work.

Manuscript submitted to ACM

https://github.com/SFU-HiAccel/SQL2FPGA

4 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

1 SELECT l.orderkey, c.orderdate,
2 c.shippriority,
3 sum(l.extendedprice*(1-l.discount))
4 as revenue
5 FROM orders as o, customer as c,
6 lineitem as l
7 WHERE o.mktsegment = 'MACHINERY' and
8 o.custkey = c.custkey and
9 l.orderkey = c.orderkey and
10 c.orderdate < date '1995-03-07'and
11 l.shipdate > date '1995-03-07'
12 GROUP BY l.orderkey, c.orderdate,
13 c.shippriority
14 ORDER BY revenue, c.orderdate

left table filter configuration bits

FILTERJOINEVALUATIONGROUP BY

SORT TBL SCAN AGGREGATION WRITE OUT

CPU FPGA

Host memory Device memory

PCIe bus

CPU FPGA

Host
memory

Device
memory

.CPP .BITSTREAM+

PCIe bus

FILTERJOINEVALUATIONGROUP BY

TB
L

SC
AN

FI
LT

ER

JO
IN

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

NLeft Table

Right Table

Result Table

BYPASS PATH BYPASS PATH

W
R

IT
E

O
U

T

Parser:

Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:

CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end

Overlay Coverage
Optimizations

Cmpt. Elimination
Optimizations

Data Transfer
Optimizations

HASH
PARTITION

TB
L

SC
AN

FI
LT

ER

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

N

Input Table Result Table

BYPASS PATH

W
R

IT
E

O
U

T

G
R

O
U

P
BY

TB
L

SC
AN

Input Table

FI
LT

ER

H
AS

H
PA

R
TI

TI
O

N

W
R

IT
E

O
U

T

Result Table

evaluation-1 configuration bits

right table filter configuration bits

evaluation-0 configuration bits

shuffle

[511-192]
output table

col id

[191-184]
right table

col id

[183-120]
left table

col id

[119-56]
join

type

[3-5] [2]
dual

key

aggr

on

[1]
join

on

[0]

left table filter configuration bits x3

x3

order customer

SORT

FILTER FILTER

JOIN

JOIN

EVALUATION

GROUP BY

FILTER

lineitem

J

FF

E

J

G

S TPC-H query #3

lineitem customerorder

F

Fig. 1. An example query processing flow using TPC-H query #3: the left listing is the SQL query, the right is a query execution plan
generated by Apache Spark SQL.

2 BACKGROUND

2.1 Query Processing

With the ever-increasing scale and workload complexity in today’s database management system (DBMS), high-
performance query processing engines with efficient optimizations are needed to retrieve and process data from a
database, whether stored on disk or in main memory. In this paper, we focus on providing compilation support for
accelerating query processing using the heterogeneous CPU-FPGA platform for in-memory database systems.

At a high level, query processing consists of three main stages: 1) high-level query language parsing and translation,
2) query plan optimization, and 3) execution of the generated query plan. For a better illustration, Figure 1 shows
an example of how a typical user query is interpreted and executed. The left of Figure 1 shows TPC-H query #3 in
SQL commands, and the right presents its corresponding logical execution plan parsed and populated from a query
processing engine. The plan is executed in a bottom-up approach, starting from scanning table data (i.e., lineitem (l),
orders (o), and customer (c) tables) to retrieve required attributes (e.g., discount, shipdate, and orderkey for lineitem (l)
table). Then they have processed through a series of relational operations: filter operations are for o.mktsegment =

’MACHINERY’, c.orderdate < date ’1995-03-07’, and l.shipdate > date ’1995-03-07’; join operations reflect o.custkey =

c.custkey and l.orderkey = c.orderkey; expression evaluation operation is for l.extendedprice * (1 - l.discount); group-by
aggregation operation is for grouping attributes: l.orderkey, c.orderdate, and c.shippriority; and sort operation is applied
to both attribute c.orderdate and aggregation result (revenue). For this work, we use Spark SQL, a query processing
module from Apache Spark [26], one of the most widely used large-scale big data analytics engines, as our front-end to
parse SQL queries and generate the optimized logical plan.

2.2 Potential of FPGA Acceleration forQuery Processing

Due to the inherent high parallelism, reconfigurability, and low power consumption characteristics, FPGAs have shown
great potential to speed up database systems. Previous research efforts have proposed FPGA accelerator designs for
database operators [6–8, 14, 28, 41] to accelerate the entire or part of a query with FPGA [5, 11, 16, 27, 29, 34, 42], and
worked on system integration of FPGA accelerators in database systems [19, 25, 32, 33]. Regarding hardware capability,
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 5

CPU FPGA

Host memory Device memory

PCIe bus

Fig. 2. An overview of heterogeneous CPU-FPGA platform used in SQL2FPGA.

the latest generation of Xilinx Alveo U280 [38] datacenter FPGA board supports HBM2 within the same package,
providing close to half TB/s off-chip memory bandwidth, which makes it highly applicable to data-intensive analytical
query processing workloads.

Nonetheless, one key factor preventing the wide adoption of FPGA acceleration is the lack of automation support
to translate SQL queries to be efficiently accelerated on an FPGA accelerator [10]. In our work, we aim to bridge this
gap by providing an automatic compilation framework to accelerate in-memory query processing, specifically for the
heterogeneous CPU-FPGA platform as shown in Figure 2, where devices communicate via the PICe interface.

We envision SQL2FPGA to be an FPGA extension plug-in, portable to accelerate different databases in the future.
When choosing the FPGA accelerator design, we leverage a set of open-source FPGA accelerator overlay designs from
AMD/Xilinx Vitis database library [37]. Even without FPGA reconfiguration, these overlay designs support flexible
acceleration for different database operators through runtime parameterization. Although overlay designs have a fixed
datapath, Xilinx overlay designs include bypassing logic and SQL2FPGA includes query plan optimizations to extend
overlay utilization during query processing as discussed in section 3.5. The dynamic partial reconfiguration approach
offers another alternative to support more flexible query operators on the FPGA. However, it comes with reoccurring
and overwhelming reconfiguration overheads and is not commonly used nor well supported on datacenter FPGAs.

3 SQL2FPGA SYSTEM DESIGN

In this section, we present the system design of SQL2FPGA, a general framework to enable automatic compilation
of SQL queries to be accelerated on the heterogeneous CPU-FPGA acceleration platform. Section 3.1 first gives the
compilation flow overview in our framework. Next, Section 3.2 presents details on the vendor-agnostic query plan
representation used in our framework. Then, design features of the AMD/Xilinx database accelerator overlay designs
are presented in Section 3.3 whereas the CPU operators used in SQL2FPGA are described in Section 3.4. In Section 3.5,
we describe the query optimizer of SQL2FPGA, which mainly consists of compiler optimizations to further improve the
processing performance of the physical query execution. Last but not least, we present the machine learning based
allocator to optimize the platform selection for the physical execution of query operations in Section 3.6

3.1 Compilation Overview

To illustrate the compilation flow of SQL2FPGA, Figure 3 shows our compiler in a three-stage structure.
To ease the development effort, SQL2FPGA is designed to leverage the front-end from different query processing

engines. In this work, we leverage the front-end from Spark SQL [2] to first parse user-provided SQL queries; then
construct an abstract syntax tree (AST) of database logical operators and expressions; and lastly, to generate an
optimized query plan applied with a series of generic static logical plan optimizations such as predicate (e.g., filter and
pre-aggregation) pushdown and expression simplification.

Manuscript submitted to ACM

6 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

Overlay Coverage
Optimizations

Cmpt. Elimination
Optimizations

Data Transfer
Optimizations

Parser:
Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:
CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end
Allocator:

ML prediction for
device selection

Fig. 3. Overview of SQL2FPGA compilation flow.

PCIe bus

J

FF

E

J

G

S TPC-H query #3

lineitem customerorder

F

Host
memory

Device
memory

CPU FPGA

Fig. 4. Physical execution plan of TPC-H query #3 on heterogeneous CPU-FPGA platform.

On the back-end side, for better design portability and reusability for different query processing engines, our
framework first parses the optimized query plan from Spark SQL into a unified query plan representation called
SQL2FPGA-QPlan to record all necessary information and relations between different logic operators. It is vendor-
agnostic and native to SQL2FPGA. Next, our optimizer examines the parsed query plan. It applies a series of compiler
optimizations to 1) improve operator acceleration coverage by the FPGA, 2) eliminate redundant computation during
physical execution, and 3) minimize data transfer overhead between operators on the CPU and FPGA. Lastly, the code
generator outputs the final acceleration code in C++ with AMD/Xilinx OpenCL APIs to interface with the accelerator
overlay designs.

Figure 4 presents the corresponding physical execution plan for TPC-H query #3 (depicted in Figure 1) on our
heterogeneous CPU-FPGA platform. Data from each table first passes through a filter operation on the CPU before
handing over the computation to the FPGA, where orders and customer tables are first joined, then subsequently joined
with table lineitem. Next, the results from the second join operation pass through an expression evaluation followed by
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 7

a group-by aggregation operation. Finally, aggregation output is transferred back to the CPU main memory and then
sorted on the host CPU.

Regarding the device scheduling of operator execution, we explore both the ideal assignment and machine learning
guided assignment, and compare their performance. The ideal performance is achieved mostly based on exhaustive
empirical experiments. We first determine the operators that can be functionally offloaded to the FPGA overlays.
Then, we individually evaluate their CPU and FPGA performance and the required data transfer overhead to decide
the platform for the final physical execution. To eliminate the manual effort used in the first approach, the second
approach utilizes machine learning techniques to identify the optimal platform, either CPU or FPGA, for the physical
execution of each query operator. Specifically, it uses multiple classifiers to discern performance patterns based on
diverse configurations, including variations in 1) input tables, 2) input and output data sizes, and 3) operation complexity.

3.2 Vendor-AgnosticQuery Plan Representation

Most of today’s query processing engines or database systems, such as Spark SQL [2], PostgreSQL [23], andMonetDB [15],
store and represent their query plans in a tree structure. However, their naming conventions and implementation
details are all different. Furthermore, no unified query plan representation is compatible with all these systems. In
general, a query plan can be represented as a tree structure, where each node represents a logical operation while the
edges indicate the data flow of the query. In SQL2FPGA, we define a vendor-agnostic query plan representation called
SQL2FPGA-QPlan to facilitate the compiler optimizations from our query optimizer. SQL2FPGA-QPlan is a tree-based
data structure where each query plan node contains the following information:

1. A list of operation expressions (e.g., projection expression, aggregation expressions, and keys and payload used for
join and group-by operations)

2. A list of input relation tables (column and type of data)
3. A list of output relation tables (column and type of data)
4. A list of children operator nodes
5. A list of parent operator nodes

In this work, we write a parser for interpreting and converting the optimized query plan from Spark SQL since it is one
of the most commonly used big data processing engines. When porting SQL2FPGA to work with other query processing
engines or database systems, the only required design change is the query plan parser to generate our SQL2FPGA-QPlan.
We plan to add query plan parsers for other database engines (e.g., PostgreSQL and MonetDB) in future work.

3.3 FPGA Accelerator Overlay Design

To support flexible acceleration for different database operators without FPGA reconfiguration, accelerator overlay
design meets the requirement to be dynamically and efficiently configured through runtime parameterization and is
commonly used and well-supported on datacenter FPGAs. In this work, we use two sets of open-source streaming-based
FPGA accelerator overlay designs from AMD/Xilinx Vitis database library [37]: Ver.2020 and Ver.2022. Moreover, in
Ver.2020, AMD/Xilinx also provides manually optimized implementations of acceleration designs for TPC-H queries,
which we use as evaluation benchmarks; note in post-2020 versions, AMD/Xilinx no longer provides such manually
optimized implementations. In post-2022 versions, the overlay designs remain the same as Ver.2022.

Manuscript submitted to ACM

8 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

FILTERJOINEVALUATIONGROUP BY

SORT TBL SCAN AGGREGATION WRITE OUT

CPU FPGA

Host memory Device memory

PCIe bus

CPU FPGA

Host
memory

Device
memory

.CPP .BITSTREAM+

PCIe bus

FILTERJOINEVALUATIONGROUP BY

J

FF

E

J

A

S TPC-H query #3

A CB

TB
L

SC
AN

FI
LT

ER

JO
IN

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

NLeft Table

Right Table

Result Table

BYPASS PATH BYPASS PATH

W
R

IT
E

O
U

T

customer orderslineitem

SORT

FILTER FILTER

JOIN

JOIN

EVALUATION

GROUP BY

Parser:

Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:

CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end

Operator Selection

CPU or FPGA

Overlay-aware
Optimizations

Suppl. query plan
Optimizations

HASH
PARTITION

TB
L

SC
AN

FI
LT

ER

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

N

Input Table Result Table

BYPASS PATH

W
R

IT
E

O
U

T

G
R

O
U

P
BY

TB
L

SC
AN

Input Table

FI
LT

ER

H
AS

H
PA

R
TI

TI
O

N

W
R

IT
E

O
U

T

Result Table

evaluation-1 configuration bits

left table filter configuration bits

right table filter configuration bits

evaluation-0 configuration bits

shuffle

[511-192]
output table

col id

[191-184]
right table

col id

[183-120]
left table

col id

[119-56]
join

type

[3-5] [2]
dual

key

aggr

on

[1]
join

on

[0]

(a) gqeJoin FPGA accelerator overlay design

FILTERJOINEVALUATIONGROUP BY

SORT TBL SCAN AGGREGATION WRITE OUT

CPU FPGA

Host memory Device memory

PCIe bus

CPU FPGA

Host
memory

Device
memory

.CPP .BITSTREAM+

PCIe bus

FILTERJOINEVALUATIONGROUP BY

J

FF

E

J

A

S TPC-H query #3

A CB

TB
L

SC
AN

FI
LT

ER

JO
IN

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

NLeft Table

Right Table

Result Table

BYPASS PATH BYPASS PATH

W
R

IT
E

O
U

T

customer orderslineitem

SORT

FILTER FILTER

JOIN

JOIN

EVALUATION

GROUP BY

Parser:

Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:

CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end

Operator Selection

CPU or FPGA

Overlay-aware
Optimizations

Suppl. query plan
Optimizations

HASH
PARTITION

TB
L

SC
AN

FI
LT

ER

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

N

Input Table Result Table

BYPASS PATH

W
R

IT
E

O
U

T

G
R

O
U

P
BY

TB
L

SC
AN

Input Table

FI
LT

ER

H
AS

H
PA

R
TI

TI
O

N

W
R

IT
E

O
U

T

Result Table

evaluation-1 configuration bits

left table filter configuration bits

right table filter configuration bits

evaluation-0 configuration bits

shuffle

[511-192]
output table

col id

[191-184]
right table

col id

[183-120]
left table

col id

[119-56]
join

type

[3-5] [2]
dual

key

aggr

on

[1]
join

on

[0](b) gqeAggr FPGA accelerator overlay design

FILTERJOINEVALUATIONGROUP BY

SORT TBL SCAN AGGREGATION WRITE OUT

CPU FPGA

Host memory Device memory

PCIe bus

CPU FPGA

Host
memory

Device
memory

.CPP .BITSTREAM+

PCIe bus

FILTERJOINEVALUATIONGROUP BY

J

FF

E

J

A

S TPC-H query #3

A CB

TB
L

SC
AN

FI
LT

ER

JO
IN

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

NLeft Table

Right Table

Result Table

BYPASS PATH BYPASS PATH

W
R

IT
E

O
U

T

customer orderslineitem

SORT

FILTER FILTER

JOIN

JOIN

EVALUATION

GROUP BY

Parser:

Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:

CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end

Operator Selection

CPU or FPGA

Overlay-aware
Optimizations

Suppl. query plan
Optimizations

HASH
PARTITION

TB
L

SC
AN

FI
LT

ER

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

N

Input Table Result Table

BYPASS PATH

W
R

IT
E

O
U

T

G
R

O
U

P
BY

TB
L

SC
AN

Input Table

FI
LT

ER

H
AS

H
PA

R
TI

TI
O

N

W
R

IT
E

O
U

T

Result Table

evaluation-1 configuration bits

left table filter configuration bits

right table filter configuration bits

evaluation-0 configuration bits

shuffle

[511-192]
output table

col id

[191-184]
right table

col id

[183-120]
left table

col id

[119-56]
join

type

[3-5] [2]
dual

key

aggr

on

[1]
join

on

[0]

(c) gqePart FPGA accelerator overlay design

Fig. 5. Overview of overlay designs from Xilinx Vitis database library Ver.2020: top (gqeJoin) mainly focuses on different join operations,
middle (gqeAggr) mainly targets group by aggregation operations, and bottom (gqePart) performs hash partition.

3.3.1 AMD/Xilinx Database Accelerator Overlay Design Ver.2020. As shown in Figure 5, the Vitis database
library (Ver.2020) consists of two core overlay designs: one focuses on join operations called gqeJoin and the other
design called gqeAggr targets group-by aggregation operations. Each overlay design also contains a separate small
prefix accelerator module called gqePart, used to perform hash partition when scaling the input table size. Regarding the
overall overlay architecture designs, both gqeJoin and gqeAggr are composed of several accelerator modules constructed
in a dataflow fashion. To dynamically gather and redirect column data during the execution of the overlay design, shuffle
units are inserted between the adjacent accelerator modules to allow table attributes to switch channel lanes as they
flow through the overlay design. All accelerator modules, including their associated shuffle units, are parameterized,
meaning they can be configured through a set of user-provided configuration registers.

Figure 6 shows an example of the configuration bit file for the gqeJoin overlay design. The configuration file contains
a total of nine 512-bit registers. The first 512-bit register records configuration for accelerator modules such as table
scan, join, aggregation, write out, and shuffle units. The second and third registers record configuration bit for the two
aggregation module. Lastly, the remaining configuration registers are used for the filter operators. For the interested
audience, please refer to [37] for details on the overlay design configuration register file format. Regarding each of the
accelerator module designs, we summarize their main features as below:

1. Join: a hash-based multi-join operator supporting join operations: inner, anti, and semi-join, on up to two keys.
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 9

left table filter configuration bits

FILTERJOINEVALUATIONGROUP BY

SORT TBL SCAN AGGREGATION WRITE OUT

CPU FPGA

Host memory Device memory

PCIe bus

CPU FPGA

Host
memory

Device
memory

.CPP .BITSTREAM+

PCIe bus

FILTERJOINEVALUATIONGROUP BY

TB
L

SC
AN

FI
LT

ER

JO
IN

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

NLeft Table

Right Table

Result Table

BYPASS PATH BYPASS PATH

W
R

IT
E

O
U

T

Parser:

Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:

CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end

Overlay Coverage
Optimizations

Cmpt. Elimination
Optimizations

Data Transfer
Optimizations

HASH
PARTITION

TB
L

SC
AN

FI
LT

ER

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

N

Input Table Result Table

BYPASS PATH

W
R

IT
E

O
U

T

G
R

O
U

P
BY

TB
L

SC
AN

Input Table

FI
LT

ER

H
AS

H
PA

R
TI

TI
O

N

W
R

IT
E

O
U

T

Result Table

evaluation-1 configuration bits (1x512-bit)

right table filter configuration bits (3x512-bit)

evaluation-0 configuration bits (1x512-bit)

shuffle

[511-192]
output table

col id

[191-184]
right table

col id

[183-120]
left table

col id

[119-56]
join

type

[3-5] [2]
dual

key

aggr

on

[1]
join

on

[0]

left table filter configuration bits (3x512-bit)

order customer

SORT

FILTER FILTER

JOIN

JOIN

EVALUATION

GROUP BY

FILTER

lineitem

J

FF

E

J

G

S TPC-H query #3

lineitem customerorder

F

Fig. 6. Configuration register specification of gqeJoin overlay design: each register row is 512-bit wide.

2. Group-by aggregation: a hash-based operator supporting group-by operation with up to eight unique keys and
producing six possible aggregate results: MIN, MAX, SUM, AVERAGE, COUNT, and COUNT-NONZERO.

3. Filter : a parallel filter design supporting up to four concurrent boolean-type condition columns.
4. Evaluation: a tree-based design with evaluation operation cells in each node, which can be configured to support

four kinds of computations for expression evaluations: comparison, boolean algebra, multiplexing, and arithmetic.
5. Aggregation: a processing unit that performs calculation of min, max, sum, and count for each input column.
6. Hash partition: an operator to distribute a large table into multiple smaller tables based on partition key(s).
7. Table scan and write out: primitive modules used to facilitate data exchange between device DRAM and FPGA

on-chip memories.

We summarize the design constraints imposed by the AMD/Xilinx accelerator overlay designs as follows. First, the
overlay designs only support 32-bit integer datapaths, preventing floating-point and variable-length string data types
from being accelerated on the overlay designs. For this reason, we conduct floating-point calculations by scaling the
floating-point value by a factor of 100, then proportionally scale down and apply type cast for the results after the
computation. Please note this is a temporary workaround. For future work, we will explore designing more optimized
FPGA accelerators for database operations to resolve this issue. For handling column data of string type, we propose an
optimization to extend the acceleration coverage of the overlay design (described in Section 3.5). The second design
constraint worth mentioning is that the maximum number of input columns supported by both overlay designs is eight.
In contrast, the maximum number of output columns is eight for gqeJoin and 16 for gqeAggr.

3.3.2 AMD/Xilinx Database Accelerator Overlay Design Ver.2022. As shown in Figure 7, the Vitis database library
Ver.2022 consists of two core overlay designs: one focuses on join operations and bloom filter (with partition) operations
called gqeKernel, and the other gqeAggr design that is the same as the one from Ver.2020 library which targets group-by
aggregation operations. Similar to Ver.2020 overlay designs, gqeKernel is composed of several accelerator modules
constructed in a dataflow fashion. Shuffle units are inserted between the adjacent accelerator modules to allow table
column data to switch channel lanes as they flow through the overlay. Accelerator modules, including their associated
shuffle units, are parameterized, i.e., they can be configured through a set of user-provided configuration registers.
However, there are several major design differences in the Ver.2022 overlay designs. First, the datapath of the overlay
designs has been extended to 64-bit integer type to support larger scale of data. Second, as the Ver.2022 overlay designs
focus on the resource-limited AMD/Xilinx Alveo U50 FPGA [39], the core operations after the filter and before the
write out modules of the gqeJoin overlay design has been refactored to support hash-join or hash-bloomfilter with
hash-partition and retired the bypass paths in the gqeKernel overlay design. Third, the gqeKernel design takes only up

Manuscript submitted to ACM

10 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

SW
ITC

H

SW
IT

C
H

PARTITION

HASH JOIN
(BUILD/PROBE)

BLOOM FILTER
(BUILD/PROBE)

HBM URAM

BYPASS PATH

C
O

L
SC

AN

FI
LT

ER

 Column Data Result Column

W
R

IT
E

O
U

T

FILTERFILTERFILTERFILTERFILTERFILTERFILTER3-IN-1 PROCESSING UNIT x8

Fig. 7. Overview of gqeKernel overlay design from AMD/Xilinx Vitis database library Ver.2022 that replaces the gqeJoin overlay design
to perform hash-based join and bloom filter (with partition) operation.

to three table columns as input data from each input table, which may consist of 1-2 key column data and 1 payload
column. This design choice is constrained by the use of a single 256MB HBM bank for storing all input data, compared
to using the higher capacity 4GB DDR4 memory in the Ver.2020 overlay design. With the reduced data movement at a
lower number of payload columns, this improves the computation throughput for join operations; however, additional
data post-processing is required on the CPU to consolidate the final join results with multiple payload columns. The
performance impact is presented and discussed in Section 4.4.
There are two limitations of the Ver.2022 overlays. First, being tailored to the resource-limited Alveo U50 FPGA, the
Ver.2022 overlay designs are limited to support low scale factor (e.g., 1GB) datasets. This is because 1) the single 256MB
HBM bank for holding all input data and partial hash tables used by the overlay design restricts the support for larger
scale factor dataset; and 2) Ver.2022 overlay design do not come with a prefix gqePart kernel to performance hash
partition on the input tables. Second, unlike Vitis database library Ver.2020, manually optimized implementations
of acceleration designs for TPC-H queries using Ver.2022 overlays are no longer provided, which brings significant
engineering effort if used without our SQL2FPGA automatic hardware-aware compilation framework.

3.4 CPU C++ Operator Design

In addition to leveraging FPGA overlay designs, we also implement a complete set of CPU C++ query operators, including
filter, hash-join, group-by aggregation, expression evaluation, and sort, based on the C++ operator implementations from
PostgreSQL [23]. There are two reasons for this. One is due to the FPGA hardware design constraints summarized in
Section 3.3: some operators still have to run on CPU. The other is for verification of the correctness of our framework.

3.5 Compiler Optimizations forQuery Plan

As mentioned in Section 3.1, SQL2FPGA optimizer consists of several compiler optimizations targeting different perfor-
mance aspects in accelerating query processing. First, we propose two optimizations to extend operator acceleration
coverage by the overlay design: StringRowIDSubstitution and SpecialJoinTransformation. Next, we eliminate and merge
repeated operations in the OperatorPruning optimization pass by traversing the entire query plan. Then, to minimize
the data transfer overhead between CPU and FPGA, the FPGAOverlayFusion transformation fuses multiple overlay
calls into a single overlay execution. Lastly, to minimize the intermediate data transfer between inner join operations,
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 11

we apply the CascadedInnerJoinReordering optimization. With regard to the generality of our proposed optimizations,
strictly speaking, only SpecialJoinTransformation is constrained to the current AMD-Xilinx overlay architecture. All
other optimizations are transferable to future accelerator engines. Alos, we will continue to explore and implement
more general query plan optimizations through our extended evaluation of TPC-DS [30] and other more complex query
benchmarks.

3.5.1 Acceleration Coverage Extension on FPGA Overlay.
Opt 1 – StringRowIDSubstitution: due to the limited 32-bit integer datapath support as described in Section 3.3, table
columns of variable-length data types such as string cannot be processed using the FPGA overlay design, even though
the relation operation does not directly depend on the string-type data. The reason is that Xilinx overlay designs do
not support dynamic memory storage for the variable-length attribute data. This design limitation prevents certain
operations from being offloaded and accelerated on the FPGA. To overcome this design limitation, in this optimization,
we first substitute the string-type attributes with its table row ID for operations that do not require the actual string
content. Next, we perform back-substitution to materialize the actual string data by traversing upward of the query
plan until it reaches the end of the query plan or the operation requires the string-type data.
Opt 2 – SpecialJoinTransformation: as summarized in section 3.3, the join accelerator module supports three types of
join (inner, anti, and semi) on up to two keys (using “=" condition, e.g., 𝑙𝑒 𝑓 𝑡_𝑡𝑎𝑏𝑙𝑒.𝑘𝑒𝑦1 = 𝑟𝑖𝑔ℎ𝑡_𝑡𝑎𝑏𝑙𝑒.𝑘𝑒𝑦1). Outer join
operation is not natively supported. Nevertheless, through relational algebra, outer join is equivalent to the summation
of separately conducting an inner join and an anti join. Moreover, by carefully going through the HLS design of the
gqeJoin overlay design, we have found a specially supported join condition for semi and anti joins when joining on two
keys such that 𝑙𝑒 𝑓 𝑡_𝑡𝑎𝑏𝑙𝑒.𝑘𝑒𝑦1 = 𝑟𝑖𝑔ℎ𝑡_𝑡𝑎𝑏𝑙𝑒.𝑘𝑒𝑦1 && 𝑙𝑒 𝑓 𝑡_𝑡𝑎𝑏𝑙𝑒.𝑘𝑒𝑦2 != 𝑟𝑖𝑔ℎ𝑡_𝑡𝑎𝑏𝑙𝑒.𝑘𝑒𝑦2. In this optimization, we
traverse the query plans to incorporate these transformations.

3.5.2 Redundant Computing Elimination inQuery Plan.
Opt 3 – OperatorPrunning: this optimization is inspired by a series of observations from examining the optimized logical
query plan from Spark SQL. First, the same operation expression using the same input columns and producing the
output columns are repeatedly called at multiple locations of the query plan. Sometimes, this could also be two query
plan nodes sharing the same operation expression while the list of input columns of one plan node is a subset of that
from the other plan node. Either way, we could prevent redundant computation by merging the two operations. Second,
the optimized logical query plan from Spark SQL sometimes contains projection operation performing only attribute
aliasing, which can be avoided during actual physical execution.

3.5.3 Minimizing Data Transfer between Operators.
Opt 4 – FPGAOveralyFusion: in reducing the expensive PCIe data transfer to exchange input/output data between
different FPGA overlay tasks, the objective of this optimization is to minimize the number of overlay tasks invoked
throughout the query plan by fusing them based on the pipeline sequence of the overlay designs. The reduced number
of overlay tasks issued also lowers the Xilinx API invocation overhead.
Opt 5 – CascadedInnerJoinReordering: join operations are compute-intensive tasks whose execution time could dramat-
ically increase depending on the scale and statistics such as distribution and cardinality of the input data. While it
requires extensive effort and in-depth analysis to optimize join operations, based on the details of these input data
characteristics, we implement a query plan optimization that could potentially lower the intermediate data transfer

Manuscript submitted to ACM

12 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

between inner join operations and, thus, improves processing performance. This optimization uses a reordering strategy
to compute inner join operations on smaller input table sizes first.

3.6 Machine Learning to Predict Execution Platform

Table 1. Operator classifier training and testing configurations

Operator
classifiers

Training
features

Classification
label

Training
set sizes

Testing
set sizes

inner join ’num_key’, ’key_name’, ’left_tbl_num_row’,
’right_tbl_num_row’, ’left_tbl_num_col’,
’right_tbl_num_col’, ’output_tbl_num_col’ ’FPGA’ or

’CPU’

1245 535semi join
anti join
groupby ’num_groupby_key’, ’num_evaluation_ops’,

’num_aggregation_ops’, ’tbl_name’,
’input_tbl_num_row’,’input_tbl_num_col’

1100 470aggregate
evaluation

In addition to optimizing the execution plan of the query, we also need to decide the most suitable platform (CPU or
FPGA) for the physical execution of the query operations. Big data query engines like SparkSQL [2] utilize analytical
cost models for their CPU-based query operators. However, they are not directly applicable for SQL2FPGA, since we
include FPGA-based operators and different implementations of the C++ CPU operators. Also, as suggested in [1],
analytical cost models, which are commonly used by optimizers to compare candidate plan costs, are poor predictors of
the execution latency.
In turn, to determine the better performing platform between CPU and FPGA for executing query opera-
tors, SQL2FPGA employs learning-based modeling and prediction techniques. Specifically, to guide this decision,
SQL2FPGA uses the decision tree classifiers [24], which are simple to understand, interpret, and implement using
Python Scikit-learn library [22]. Underneath, its core algorithm recursively splits the input training dataset based on
certain criteria (e.g., Gini impurity, information gain, or mean squared error) until it reaches a stopping condition. The
stopping condition is tuned to prevent model overfitting consists of a mixed factors such as the maximum tree depth
and the minimum number of samples leaf nodes.

For the different compute-based operations summarized and listed in Section 3.3, Table 1 shows the classifiers we
train based on 1) input/output data size (i.e., ’tbl_num_row’ and ’tbl_num_col’), 2) input table specific information (i.e.,
’key_name’ and ’tbl_name’), and 3) complexity of operation (i.e., ’num_key’, ’num_groupby_key’, ’num_evaluation_ops’,
and ’num_aggregation_ops’). In return, the classifiers return a single label identifying the predicted optimal platform
(i.e., ’FPGA’ or ’CPU’). To generate the training and testing dataset for each operator, we vary the training features for
each operator across a wide range, and split 70:30 on the dataset.

Table 2. Evaluated DecisionTreeClassifier model parameters

DecisionTreeClassifier
model parameters Options

criterion ’gini’ and ’entropy’
min_weight_fraction_leaf 0.1, 0.2, 0.8, 0.9

min_samples_split 1, 2, 19, 20
max_depth 1, 2, ... 29, 30
max_features ’sqrt’ and ’log2’

Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 13

For tuning the decision tree classifier, Table 2 lists the model parameters and options we evaluate to train the classifier
with Python Scikit-learn library [22]. criterion indicates the function to measure the quality of a split; we use criteria
’gini’ for the Gini impurity and “entropy” for the information gain. min_weight_fraction_leaf presents the minimum
weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node; we vary this from
0.1 to 0.9. min_samples_split shows the minimum number of samples required to split an internal node; we vary this
from 1 to 20. max_depth describes the maximum depth of the tree; we vary this from 1 to 30. max_features presents the
number of features to consider when looking for the best split; we experiment with ’sqrt()’ and ’log2()’.

4 RESULTS AND ANALYSIS

First, we present the experimental setup for our evaluations. Second, we evaluate and analyze the overall performance of
SQL2FPGA under different design configurations and compare performance results to Spark SQL. Third, we investigate
the performance impact of our optimization passes and discuss how they can efficiently accelerate query processing on
the hybrid CPU-FPGA platform. Fourth, we summarize the performance difference between the Ver.2020 and Ver.2022
overlay designs. Lastly, we present the performance of the machine learning guided device selection, as well as our
preliminary experimental results evaluating on selective TPC-DS benchmark queries.

4.1 Experimental Setup

Benchmark queries.We evaluate SQL2FPGA on all 22 queries in TPC-H Version 2 [31], the de facto industry standard
for online analytical processing (OLAP) performance benchmarking. The TPC-H dataset sizes we populate are in scale
factors of 1GB (SF1) and 30GB (SF30), demonstrating that SQL2FPGA supports different dataset scales while consistently
achieving performance improvements. Note that only SF1 is evaluated using the Ver.2022 overlay designs due to the
limited HBM memory space for storing the input data.
Hardware platform and software tool. For our system evaluation, we deploy SQL2FPGA on a CPU-FPGA heteroge-
neous platform with the 14nm 12-core (24-thread) Intel Xeon Silver 4214 CPU and 128GB DRAM as the host platform,
while the FPGA accelerator overlay designs Ver.2020 are deployed on two of the 16nm AMD/Xilinx Alveo U280 (with
32 HBM2 banks and Gen3x16 PCIe interface) [38] datacenter FPGA boards as described in Section 2.2; and accelerator
overlay designs Ver.2022 are deployed on two of the 16nm AMD/Xilinx Alveo U50 datacenter FPGA boards.

In terms of optimizations, Spark SQL incorporates various CPU optimizations, including code generation, predicate
pushdown, projection pruning, shuffle aggregation, columnar storage utilization, vectorization, and runtime code
generation with Whole-Stage Code Generation (WSCG), to enhance query processing performance [2]. On the other
hand, our C++ software version (implemented based on the widely used PostgreSQL operators [23]) is compiled with the
‘-O3’ flag, which includes loop unrolling, function inlining, instruction scheduling, aggressive register allocation, loop
vectorization, automatic parallelization, and other optimizations to produce faster code. On the other hand, our current
choice of the FPGA accelerator design from AMD/Xilinx database library has the potential to be further optimized.

For correctness verification and performance validation purposes, we use the FPGA overlay designs Ver.2020 from
AMD/Xilinx Vitis database library 2020.1 [37], the latest version that provides the manually optimized designs for
accelerating the TPC-H queries. For the FPGA overlay designs Ver.2022, we use AMD/Xilinx Vitis database library
2022.1 [37], which does not include any manually optimized designs for accelerating the TPC-H queries.

We build the two FPGA accelerator overlay designs: gqeJoin and gqeAggr using AMD/Xilinx Vitis 2020.1, and they
operate at 175MHz and 200MHz, respectively. We also build gqeKernel using AMD/Xilinx Vitis 2022.1, and it operates
at 178MHz. Tables 3 and 4 below list the resource usage for the Ver.2020 Vitis database overlays on the U280 FPGA and

Manuscript submitted to ACM

14 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

Table 3. Resource utilization of the Ver.2020 Vitis database overlays on AMD-Xilinx U280 FPGA.

Overlays LUT FF BRAM URAM DSP

gqeJoin
248,097
(22.93%)

318,388
(14.17%)

322
(19.96%)

192
(20.00%)

148
(1.64%)

gqeAggr
307,466
(27.96%)

399,958
(17.49%)

263
(16.17%)

256
(26.67%)

626
(6.94%)

gqePart
81,398
(7.52%)

86,471
(3.85%)

77
(4.77%)

256
(26.67%)

10
(0.11%)

Table 4. Resource utilization of the Ver.2022 Vitis database overlays on AMD-Xilinx U50 FPGA.

Overlays LUT FF BRAM URAM DSP

gqeKernel
424,564
(48.69%)

434,954
(24.95%)

569
(42.34%)

264
(41.25%)

75
(1.26%)

gqeAggr
298,470
(34.23%)

399,737
(22.93%)

255
(18.97%)

256
(40.00%)

626
(10.52%)

Ver.2022 Vitis database overlays on the U50 FPGA, respectively. As for the evaluation of TPC-H benchmarks, we use
Apache Spark 3.1.1 with Scala 2.12. We assume an in-memory database where all data is preloaded in the host CPU’s
DRAM memory. Thus, we load the entire TPC-H dataset into main memory before executing Spark SQL queries to
emulate an in-memory database system. Our execution time includes computation time as well as the data transfer
time between host CPU DRAM and FPGA device DRAM. It does not include the query planning time as the scope of
this paper focuses on static and automatic compilation.

4.2 Overall Performance Improvement

Figure 8 summarizes the overall performance speedup of SQL2FPGA with AMD/Xilinx FPGA overlay designs Ver.2020
under different design configurations over the Spark SQL execution across all 22 TPC-H queries in SF1 and SF30;
and Figure 9 summarizes the overall performance speedup of SQL2FPGA with AMD/Xilinx FPGA overlay designs
Ver.2022 across all 22 TPC-H queries in SF1. The baseline Spark SQL design is executed on a 24-thread CPU. To
demonstrate the performance improvement between different system configurations in SQL2FPGA, we show three
design versions: 1) CPU C++ version implementing all operators used in the query plan using our C++ operator functions
implemented based on PostgreSQL [23] optimized C++ operators and execute them entirely on CPU; 2) CPU-FPGA
hybrid execution utilizing both CPU and FPGA devices and directly applying the complete set of optimizations, without
considering whether an aggressive optimization may lead to performance degradation or not; and 3) best optimized
hybrid CPU-FPGA execution plan that exhaustively searches through all optimization combinations to achieve the
fastest processing.

Due to the benefits of ahead-of-time compilation, the CPU C++ version designs compiled using the g++ compiler
typically perform better than Apache Spark execution with Java virtual machine (JVM). Across all TPC-H queries, the
CPU C++ version designs achieve an average of 4.8x and 4.4x performance speedup for SF1 and SF30.

For the hybrid CPU-FPGA execution versions, the exhaustive-search optimized version explores all optimization
combinations to obtain the final query execution plan and thus achieves the highest speedups. Note that the searching
overhead is rather low with only 32 search space points from our five optimizations, which takes a few minutes to
evaluate. With AMD/Xilinx FPGA overlay designs Ver.2020, SQL2FPGA achieves an average performance speedups of
11.3x and 14.6x for SF1 and SF30. SQL2FPGA with AMD/Xilinx FPGA overlay designs Ver.2022, achieves an average
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 15

Scale Factor: 1GB

Scale Factor: 30GB

0

5

10

15

20

25

30

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

SparkSQL (cached) SQL2FPGA CPU C++ SQL2FPGA hybrid (all opt. enabled)
SQL2FPGA hybrid (exhuastive search) Xilinx Demo (hand written)

0

10

20
30

40

50

60
70

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

[52.3x, 52.3x, 52.3x][37.9x, 37.9x, 47.3x] [37.6x, 37.6x, 48.6x] [36.5x, 36.5x, 48.9x]

[108.2x, 108.2x, 121.3x] [152.6x, 152.6x, 181.7x]

Fig. 8. Comparison of overall speedup results over Spark SQL across all TPC-H queries and their geometric means using AMD/Xilinx
FPGA overlay designs Ver.2020.

Scale Factor: 1GB

0

5

10

15

20

25

30

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

SparkSQL (cached) SQL2FPGA CPU C++ SQL2FPGA hybrid (all opt. enabled) SQL2FPGA hybrid (exhaustive search)
[35.0x, 35.0x] [31.6x, 31.6x]

Fig. 9. Comparison of overall speedup results over Spark SQL across all TPC-H queries and their geometric means using AMD/Xilinx
FPGA overlay designs Ver.2022.

performance speedup of 9.8x for SF1. On the other hand, the all opt. version designs are optimized with the full set
of compiler optimizations (described in section 3.5). SQL2FPGA still consistently achieves 10.1x and 13.9x average
speedups over the Spark SQL baseline designs with AMD/Xilinx FPGA overlay designs Ver.2020 for SF1 and SF30; while
it achieves an average speedup of 9.6x using AMD/Xilinx FPGA overlay designs Ver.2022 for SF1.

Comparing the CPU C++ implementation and our hybrid execution design enabled with all optimizations, the latter
achieves an average speedup of 2.1x and 3.2x over the CPU C++ design for SF1 and SF30 with AMD/Xilinx FPGA
overlay designs Ver.2020 and an average speedup of 2.0x using AMD/Xilinx FPGA overlay designs Ver.2022 for SF1,

Manuscript submitted to ACM

16 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

demonstrating the benefit of hybrid CPU-FPGA acceleration in query processing. For the presented experimental
results, we applied our proposed query plan optimizations in the FPGA hybrid mode, but not in the CPU/C++ version
as most of our proposed optimizations are tailored for the FPGA execution. Indeed, two of our proposed query plan
optimizations, Opt 3-OperatorPruning and Opt 5-CascadedInnerJoinReordering, also benefit the CPU/C++ execution.
With these two optimizations applied, on average, our CPU-FPGA hybrid mode remains 2.83x faster than the CPU/C++
execution on the SF30 dataset. Lastly, in term of energy efficiency, for smaller dataset size (e.g., SF1), our approach is
2.14x and 9.21x more efficient than our CPU C++ and Spark SQL designs, respectively.

To further verify the quality of our SQL2FPGA automatic acceleration solution, we also evaluate and compare it
with the AMD/Xilinx provided hand-tuned query acceleration designs. The results show that our hybrid execution
designs using AMD/Xilinx FPGA overlay designs Ver.2020 achieve similar performance with a marginal 7% performance
degradation and around 1% improvement over the AMD/Xilinx provided designs for SF1 and SF30.

Lastly, to better illustrate how the workload is distributed between CPU and FPGA, we examine the following two
queries in detail. First, as shown in Figure 4, Query3 from TPC-H retrieves data from three tables and is processed by 8
operators. It takes around 318ms to compute when all operators are executed on CPU for the SF1 dataset. As shown
in Figure 4, when the ‘FILTER’ and ‘SORT ’ operations are done on CPU, and FPGA executes ‘JOIN ’, ‘EVALUATION ’,
and ‘GROUPBY ’, the execution time is reduced to around 83ms. Second, for Query8 from TPC-H, with a total of 13
operators, pure CPU execution takes around 282ms; hybrid CPU-FPGA execution takes around 83ms with 7 operators
done on CPU and 6 ‘JOIN ’ operators executed on FPGA.

4.3 Speedup for Different Optimization Passes

To quantitatively evaluate the performance impact of the optimization passes, Figure 10 and 11 show performance
improvements for AMD/Xilinx overlay design Ver.2020 and Ver.2022, respectively, when incrementally applying the
optimization passes as described in section 3.5. For better visualization, Figure 12 and 13 show the exact number of
TPC-H queries that benefit from each optimization when using AMD/Xilinx overlay design Ver.2020 and Ver.2022,
respectively. Note that the presented performance results are normalized based on the SQL2FPGA CPU C++ version as
the baseline design to demonstrate the performance impact of integrating FPGA to accelerate query processing.
no opt – direct offload: Across all TPC-H queries, only nearly half of queries achieve a performance improvement,
while the remaining queries show either performance degradation or no performance change, as shown in Figure 12
and 13. The performance degradation is mainly due to the lack of consideration for the acceleration strength of FPGA
operators and the performance trade-offs between FPGA acceleration and data transfer overheads. Using the optimized
logical query plan directly from Spark SQL without applying any query plan optimizations from SQL2FPGA, no opt
designs offload every operation supported by the overlay designs to the FPGA device when possible. The no performance
change is mainly because these queries do not utilize FPGA overlay designs. This observation also motivates our compiler
optimizations. Nevertheless, considering the overall performance impact across all queries, the acceleration benefit still
outweighs the performance slowdown, and it achieves around 1.2x performance speedup over the CPU C++ designs for
both Ver.2020 and Ver.2022 overlay designs.
opt 1 – strRowIDSub:After enabling the string datatype to row ID substitution optimization pass to extend acceleration
coverage on the FPGA overlay designs while reducing the memory footprint between operations, 11 queries from both
scale factor datasets using Ver.2020 overlay designs and 10 queries from SF1 dataset using Ver.2022 overlay designs,
respectively, achieve improved performance. Especially for queries that were not previously able to offload any operation
to the FPGA overlay design, like query #10, could offload three operators to FPGA overlay and thus achieve up to
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 17

0

1

2

3

4

5

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

SQL2FPGA CPU C++ SQL2FPGA (no opt) SQL2FPGA (opt 1 - strRowIDSub)
SQL2FPGA (opt 2 - JoinTransform) SQL2FPGA (opt 3 - OpPruning) SQL2FPGA (opt 4 - overlayFusion)
SQL2FPGA (opt 5 - InnerJoinReorder)

0

1

2

3

4

5

6

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

Scale Factor: 1GB

Scale Factor: 30GB

[37.3x, 37.3x, 37.3x]

7.1x 5.1x [9.0x, 9.0x, 9.0x]

12.2x [7.5x, 7.5x] 6.9x 8.9x

Fig. 10. Performance breakdown of all optimization passes included in SQL2FPGA evaluated across all TPC-H queries and their
geometric means using AMD/Xilinx FPGA overlay designs Ver.2020: each optimization is incrementally added based on the prior
optimizations.

Scale Factor: 1GB

0

1

2

3

4

5

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

SQL2FPGA CPU C++ SQL2FPGA (no opt) SQL2FPGA (opt 1 - strRowIDSub)
SQL2FPGA (opt 2 - JoinTransform) SQL2FPGA (opt 3 - OpPruning) SQL2FPGA (opt 4 - overlayFusion)
SQL2FPGA (opt 5 - InnerJoinReorder)

6.6x 6.6x

Fig. 11. Performance breakdown of all optimization passes included in SQL2FPGA evaluated across all TPC-H queries and their
geometric means using AMD/Xilinx FPGA overlay designs Ver.2022: each optimization is incrementally added based on the prior
optimizations.

Manuscript submitted to ACM

18 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

0

5

10

15

20

25

no opt -
dire

ct
offlo

ad

opt 1
 - s

trR
owIDSu

b

opt 2
 - J

oinTransfo
rm

opt 3
 - O

pPruning

opt 4
 - o

ve
rla

yF
usio

n

opt 5
 - I

nnerJo
inReorder

of

 Q
ue

rie
s

Speedup Slowdown No change

Scale Factor: 1GB

0

5

10

15

20

25

no opt -
dire

ct
offlo

ad

opt 1
 - s

trR
owIDSu

b

opt 2
 - J

oinTransfo
rm

opt 3
 - O

pPruning

opt 4
 - o

ve
rla

yF
usio

n

opt 5
 - I

nnerJo
inReorder

Speedup Slowdown No change

Scale Factor: 30GB

Fig. 12. Statistics for number of TPC-H queries impacted by SQL2FPGA’s optimization passes with AMD/Xilinx FPGA overlay designs
Ver.2020.

0

5

10

15

20

25

no opt -
dire

ct
offlo

ad

opt 1
 - s

trR
owIDSu

b

opt 2
 - J

oinTransfo
rm

opt 3
 - O

pPruning

opt 4
 - o

ve
rla

yF
usio

n

opt 5
 - I

nnerJo
inReorder

of

 Q
ue

rie
s

Speedup Slowdown No change

Fig. 13. Statistics for number of TPC-H queries impacted by SQL2FPGA’s optimization passes with AMD/Xilinx FPGA overlay designs
Ver.2022.

1.42x and 1.88x speedup for SF1 and SF30, respectively. Only one query (query #15) experience performance slowdown
(∼7% for SF1 and ∼13% for SF30), mainly because of the data transfer overhead between CPU host memory and FPGA
DRAM, which outweighs the overall FPGA acceleration benefit. Nevertheless, on average, this optimization effectively
accelerates query processing by offloading more operators to accelerate on the FPGA overlay designs and lowering the
datatype complexity used in operations. Using Ver.2020 overlay designs, it achieves 1.09x and 1.2x speedups over the no
opt designs for SF1 and SF30 across all affected queries. It also achieves a 1.2x speedup for SF1 with Ver.2022 overlay
designs.
opt 2 – joinTransfrom: To extend acceleration coverage on the FPGA overlay designs, the special join transformation
improves the processing performance of two queries: #13 and #21, by 3.02x and 1.33x for SF1, and 2.50x and 1.47x
for SF30 when accelerated using Ver.2020 AMD/Xilinx overlay designs. For query #13, the optimization transforms
and implements the left outer join using two separate join operations: a left anti join and an inner join. For query
#21, the optimization detects two special-case dual-key left anti join and left semi join operations and offloads them
to accelerate on FPGA. When accelerated using Ver.2022 AMD/Xilinx overlay designs, this optimization improves
processing performance of query #13 by 3.1x, but does not affect query #15 because special-case dual-key left anti join and
left semi join operations are no longer supported. In summary, this optimization extends the FPGA overlay acceleration
coverage. Its incremental improvement is around 2.18x and 1.99x better over the previous opt 1 - strRowIDSub designs
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 19

for SF1 and SF30 across the two affected queries on the Ver.2020 overlay designs; and the incremental improvement is
3.1x improved for one affected query on the Ver.2022 overlay designs.
opt 3 – opPruning: In eliminating redundant computations, the operator pruning optimization removes redundant
operations and merges repeating operations in the query plan, thus improving processing performance. Experimental
results show that it is effective for five queries.

For query #11, two branches in the query plan carry the same operations, which perform two consecutive join
operations: first, join based on the suppkey key between partsupp and supplier tables, then join with the nation table on
nationkey. By merging these two branches and executing the corresponding join operations only once, the performance
improves by 1.97x and 2.72x for SF1 and SF30 with the Ver.2020 overlay designs; and by 1.88x for SF1 with the Ver.2022
overlay designs.

For query #15, the same filter operation is called at two separate execution branches in the query plan. Thus, to
reduce the execution time, the compiler optimization eliminates one of the function calls and gains 1.20x and 1.13x
speedups for SF1 and SF30, respectively, with the Ver.2020 overlay designs; and the gain is 1.46x for SF1 with the
Ver.2022 overlay designs.

For query #17, the performance improvement is 6.36x and 33.93x for SF1 and SF30, respectively, with the Ver.2020
overlay designs; and the speedup is 3.21x for SF1 with the Ver.2022 overlay designs.

There are two reasons for the improved performance. First, it removes the group-by aggregation operation on
the largest table in the TPC-H dataset, lineitem table, which takes around 88% processing time on the SF1 dataset.
Second, through the commutative property of join, we merge the previous group-by aggregation operation with the
join operation on the same partkey key between lineitem and part tables.

For query #18, the performance speedup is 1.79x and 1.72x for SF1 and SF30, respectively, with the Ver.2020 overlay
designs; and the speedup is 1.60x for SF1 with the Ver.2022 overlay designs. This improvement is due to the removal of
a duplicated group-by aggregation operation (taking about 36% processing time on SF1 dataset) on the orderkey key of
lineitem table.

Lastly, for query #21, the performance speedup is 1.43x and 1.54x for SF1 and SF30, respectively, with the Ver.2020
overlay designs; and the speedup is 1.16x for SF1 with the Ver.2022 overlay designs. To reduce processing time, the
optimization removes three redundant column alias renaming and a duplicated filter operation restricting rows where
the receiptdate attribute column is less than or equal to the commitdate attribute column on the lineitem table.

In summary, across the five queries affected by this optimization, the average performance speedup is 2.07x and
3.08x over the opt 2 - joinTransfrom designs of the affected queries for SF1 and SF30, respectively, with the Ver.2020
overlay designs; and the average performance speedup is 1.74x for SF1 with the Ver.2022 overlay designs.
opt 4 – overlayFusion: In reducing the expensive PCIe data transfer to exchange input and output data between
different FPGA overlay tasks, the overlay fusion optimization maximizes the number of operations carried out within a
single overlay design while minimizing the number of overlay acceleration API calls. As listed in Table 5, experimental
results show that it is effective for six queries with the Ver.2020 overlay designs, and four queries with the Ver.2022
overlay designs.

For query #1, the number of overlay calls is reduced from 2 to 1, achieving 1.53x and 2.12x speedup for SF1 and SF30,
respectively, with the Ver.2020 overlay designs; and the average performance speedup is 1.53x for SF1 with the Ver.2022
overlay designs. For query #3, the number of overlay calls is reduced from 5 to 3, and achieve 1.34x and 3.14x speedup
for SF1 and SF30, respectively, with the Ver.2020 overlay designs; and the average performance speedup is 1.30x for SF1
with the Ver.2022 overlay designs. For query #4, the number of overlay calls is reduced from 3 to 1, achieving 1.20x and

Manuscript submitted to ACM

20 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

Table 5. Number of overlay acceleration API calls before and after applying overlayFusion optimization.

Overlay
Design Version Q1 Q3 Q4 Q5 Q6 Q10

Ver.2020 Before Fusion 2 5 3 6 2 5
After Fusion 1 3 1 5 1 3

Ver.2022 Before Fusion 2 5 N/A 6 N/A 5
After Fusion 1 3 5 3

1.20x speedup for SF1 and SF30, respectively, with the Ver.2020 overlay designs. For query #5, the number of overlay
calls is reduced from 6 to 5, achieving 1.07x and 1.14x speedup for SF1 and SF30, respectively, with the Ver.2020 overlay
designs; and the average performance speedup is 1.06x for SF1 with the Ver.2022 overlay designs. For query #6, the
number of overlay calls is reduced from 2 to 1, achieving 1.09x and 1.09x speedup for SF1 and SF30, respectively, with
the Ver.2020 overlay designs. For query #10, the number of overlay calls is reduced from 5 to 3, achieving 1.29x and
1.85x speedup for SF1 and SF30, respectively, with the Ver.2020 overlay designs; and the average performance speedup
is 1.30x for SF1 with the Ver.2022 overlay designs.

In summary, the performance results show an average speedup of 1.25x for the SF1 dataset and an average speedup
of 1.48x for the SF30 dataset over the opt 3 - opPruning designs of the affected queries with the Ver.2020 overlay designs;
and the average performance speedup is 1.29x for SF1 with the Ver.2022 overlay designs.
opt 5 – innerJoinReorder: Join operations are intensive in compute and memory, typically occupying a significant
chunk of processing time. By reducing the intermediate table data generated based on statistics of the number of input
table rows, the inner join reorder optimization aims to reduce data transfer size and compute intensity to improve
processing. Our evaluation results show that this optimization is effective for four queries from both scale factor datasets
and three queries from SF1 dataset using Ver.2020 and Ver.2022 overlay designs, respectively, to improve processing
performance.

This optimization is particularly effective for query #2, achieving 18.87x and 28.76x speedup for SF1 and SF30,
respectively, with the Ver.2020 overlay designs; and the average performance speedup is 12.03x for SF1 with the Ver.2022
overlay designs. This is because, in query #2, the original query plan from Spark SQL schedules the most time-consuming
join path in an order such that it first joins tables partsupp (800,000 rows) and supplier (10,000 rows), then table nation
(25 rows), and lastly, table region (5 rows). As a result, the intermediate number of rows generated (for the SF1 dataset)
between these join operators are 80,000, 800,000, and 162,880. In contrast, our compiler optimization reorders the join
operators to prioritize joining tables with the least number of rows, so we first join between tables nation (25 rows) and
region (5 rows), then supplier (10,000 rows), and lastly supplier (800,000 rows). The intermediate rows are lowered to 5,
2036, and 162880. As for the SF30 dataset, although the intermediate number of rows is proportionally reduced, the
performance increases beyond linear scaling.

For query #7, the optimization swaps the join order between tables order (1,500,000 rows) and nation (25 rows), and
this achieves 2.47x and 2.17x speedups for SF1 and SF30, respectively, with the Ver.2020 overlay designs; and the average
performance speedup is 2.84x for SF1 with the Ver.2022 overlay designs. For query #11, the optimization swaps join
order between tables partsupp (800,000 rows) and nation (25 rows), achieving 8.53x and 2.80x speedups for SF1 and
SF30, respectively, with the Ver.2020 overlay designs; and the average performance speedup is 6.06x for SF1 with the
Ver.2022 overlay designs. For query #15, the optimization treats the number of rows as one from a column aggregation
operator and swaps join order with table supplier (10,000 rows); this achieves 1.06x and 1.98x speedup for SF1 and SF30
with the Ver.2020 overlay designs.
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 21

Scale Factor: 1GB

0

5

10

15

20

25

30

Q0
1

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q0
8

Q0
9

Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

GE
OM

EA
N

Sp
ee

du
p

(x
)

SparkSQL (cached) SQL2FPGA CPU C++
SQL2FPGA hybrid (overlay 2020) SQL2FPGA ML-guided selection hybrid (overlay 2020)
SQL2FPGA hybrid (overlay 2022) SQL2FPGA ML-guided selection hybrid (overlay 2022)

[37.9x, 37.9x, 35.0x, 35.0x]
[37.6x, 33.7x] [52.3x, 52.3x] [36.5x, 36.5x, 31.6x, 31.6x]

Fig. 14. Overall performance comparison between AMD/Xilinx overlay designs Ver.2020 and Ver.2022.

1

2

4

8

16

Ver.2020 better Ver.2022 better same perf.

of

 Q
ue

rie
s

Fig. 15. Statistics for number of TPC-H queries affected between AMD/Xilinx overlay designs Ver.2020 and Ver.2022.

The performance results show an average speedup of 3.22x and 3.58x for the SF1 and SF30 datasets, respectively, with
the Ver.2020 overlay designs; and the average performance speedup is 5.91x for SF1 with the Ver.2022 overlay designs.

4.4 Performance Comparison Ver.2020 Vs Ver.2022

To quantitatively evaluate the performance impact between different FPGA overlay designs, Figure 14 compares the
performance improvements using AMD/Xilinx overlay design Ver.2020 and Ver.2022 over the SparkSQL execution on
CPU. Overall, across all 22 TPC-H queries, SQL2FPGA execution with Ver.2020 overlay design outperforms Ver.2022
overlay design execution by 1.18x. For better visualization, Figure 15 shows the exact number of TPC-H queries that
achieve better acceleration between AMD/Xilinx overlay design Ver.2020 and Ver.2022. Ver.2020 overlay design performs
better on a majority of queries (15 out of 22): query 2-5, 7-10, 12-13, 17-18, and 20-22; Ver.2022 overlay design outperforms
Ver.2020 design on 4 out of 22 queries: query 11 and 14-16; and both overlay versions achieve the same performance for
the remaining three queries: query 1, 6, and 20.

Manuscript submitted to ACM

22 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

Regarding the performance slowdown switching from Ver.2020 to Ver.2022 overlay design, one reason is due to the
additional input/output data transfer between host CPU and FPGA for every overlay invocation, as well as the data
consolidation process to generate the finalized output table when conducting join operations, described in Section 3.3.2.
Across all affected queries, this overhead on average accounts for around 21% of the total FPGA execution time and 5%
total hybrid (CPU & FPGA) execution time. Another reason for the lower performance when using Ver.2022 overlay
design is that, as the overlay design upgrades to a 64-bit datapath, the gqeKernel accelerator hangs due to hash table
overflowing and process deadlocking when processing join operations on larger tables (e.g., lineitem and customer

tables). Out of the 15 queries where ver.2022 has the worse performance, eight queries are affected by this; meaning
they leverage less FPGA acceleration. Our experiment results show that across all affected queries, this limitation on
average accounts for around 42% performance slowdown of the total hybrid (CPU & FPGA) execution time.

For the four queries that achieve performance speedups using Ver.2022 over the Ver.2020 overlay design, only one
invocation of the gqeKernel is issued to handle a join operation, meaning the the additional input/output data transfer
overhead is kept at the lowest level. Although the data consolidation process still remains, the computation speedup
from handling only the essential data column (key column) outperforms the Ver.2020 overlay design. Across all affected
queries, this achieves around 1.34x performance speedup of the total hybrid (CPU & FPGA) execution time.

Lastly, the remaining three queries that have the same performance between Ver.2020 and Ver.2022 do not use the
gqeKernel overlay design.

4.5 Machine Learning Guide Platform Selection Performance

Additionally, Figure 14 also shows the performance comparison results of both the ideal performance and the machine
learning predicted performance as described in Section 3.1, when selecting the platform (between CPU and FPGA) for
the physical execution of query operators. All operator classifiers, except for inner join, have achieved 100% prediction
accuracy during training as well for our TPC-H evaluation. For inner join, the classifier has a 96.5% accuracy during
training, and is around 93.5% accurate during our TPC-H query evaluation. Compared to the ideal performance, platform
selection prediction using machine learning classifiers achieves nearly the same performance for most queries, with an
average 4% and 5% performance degradation when evaluated across all 22 TPC-H queries with Ver.2020 and Ver.2022
overlay designs, respectively.
The performance difference is due to incorrect classification for a total of six inner join operations from five queries:
query 5, 8, 9, 14, and 15. For query #5, two inner join operations are misclassified. With the small input table sizes, the
performance degradation is low, around 11.6% and 7.9% with Ver.2020 and Ver.2022, respectively. For query #8, one inner
join operations is mispredicted. The performance degradation is around 22.9% and 7.5% with Ver.2020 and Ver.2022,
respectively. For query #9, one inner join operations is misclassified. Due to similar execution performance between CPU
and FPGA, the performance degradation is quite low, around 1.2% and 0.64% with Ver.2020 and Ver.2022, respectively.
For query #14, one inner join operations is mispredicted. Since the query only consists of three operators and the join
operations being most time consuming, mis-prediction has a much higher performance impact, scoring a performance
slowdown of 1.54x and 2.18x with Ver.2020 and Ver.2022, respectively. For query #15, one inner join operations is
misclassified. The performance degradation is around 10.6% and 12.1% with Ver.2020 and Ver.2022, respectively.

4.6 Performance Evaluation on TPC-DS BenchmarkQueries

To further validate the generality of SQL2FPGA, we also test with several TPC-DS queries [30] and show the acceleration
performance as below. Compiling the TPC-DS queries using SQL2FPGA is relatively straightforward, but parsing the
Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 23

database tables into the format that Vitis database accelerator overlay can work with is more challenging. Figure 16
shows the performance speedups for TPC-DS Q1-Q5. Compared to Spark SQL baseline designs, SQL2FPGA CPU C++
designs achieve 8.03x geomean and up to 32.65x speedup whereas the optimized SQL2FPGA hybrid designs achieve
13.36x geomean and up to 46.53x performance speedup.

0

5

10

15

Q01 Q02 Q03 Q04 Q05 GEOMEAN

Sp
ee

du
p

(x
)

SparkSQL (cached) SQL2FPGA CPU C++ SQL2FPGA hybrid
32.7x 46.5x

Fig. 16. Comparison of overall speedup results over Spark SQL across TPC-DS queries 1 to 5 and their geometric means.

5 RELATEDWORK

5.1 Query Processing Acceleration on FPGA

Previous efforts have proposed FPGA accelerator designs for database operators. Some require reconfiguring the entire
FPGA to support different acceleration designs [6, 16, 32]. At the same time, others support a more flexible acceleration
of different operators through runtime parameterization [27–29, 34] or partial dynamic reconfiguration [7, 8, 14, 42],
which is more commonly used for the embedded FPGA platforms. However, most of these works target near-storage
acceleration using "bump-in-a-wire" FPGA accelerators to help reduce data exchange between CPU and disk storage.
This differs from our work, where we target to accelerate query processing for in-memory database systems where
workloads are mostly computation-bound, which opens new opportunities for FPGA acceleration.

Other works have also developed mechanisms to integrate FPGA acceleration with an existing database system [19,
25, 32, 33]. However, their designs are either not applicable to general database systems or do not provide an automatic
compilation to translate queries to FPGA accelerators.
FPGA accelerator for database operations. To accelerate restriction and aggregate operators, Dennl et al. introduced
a flexible method to compose the datapath of their accelerator design at runtime through partial dynamic reconfiguration
on the FPGA [8]. In [28], Sukhwani et al. implemented a tournament tree algorithm-based FPGA accelerator for sort
operation. In [6], Casper et al. proposed efficient hardware designs for selection, merge join, and sort operations and
improved memory bandwidth utilization compared to a software version. To dynamically adjust the FPGA accelerator
design to match different workload sizes for filter and boolean evaluation, Manev et al. developed a dynamic stream
processing accelerator with scalable processing primitives and partial reconfiguration on the FPGA [14].
FPGA acceleration for query processing. In supporting flexible FPGA acceleration for operations, prior efforts have
explored partial reconfiguration on FPGA to compose query-specific data paths from pre-compiled components at
runtime to accelerate query processing [7, 8, 17, 42]. The series of research conducted by Denn et al. involve transforming
an SQL query into a hardware pipeline composed of partially reconfigurable modules, assembled at runtime using a
static system that interfaces with the partial modules and the database management system [7, 8, 42]. On the other hand,
Mätas et al. focus on the scheduling and providing modular system-level APIs to allow a dynamically reconfigurable

Manuscript submitted to ACM

24 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

dataflow processing system. This enables independent building, maintenance, and operation of the static shell and
reconfigurable modules, enhancing productivity through code reuse and shortening tool runtimes [17]. These work
are orthogonal to our work since we focus on the translation and automatic mapping of SQL operations onto existing
overlay designs.

While partial dynamic reconfiguration supports flexible switching from one query to the following query using
RTL, most datacenter FPGA boards either do not have good partial dynamic reconfiguration tool support or have a
high reconfiguration overhead compared to the embedded FPGAs. Targeting datacenter usage, SQL2FPGA uses FPGA
overlay designs that could fit entirely onto one FPGA, and we use runtime parameterization for runtime reconfiguration.
A similar approach to ours is used in [27, 29], where Sukhwani et al. propose a hardware/software co-design with
selection, projection, and sort operations offloaded to an FPGA accelerator, demonstrating the benefits for coupling
FPGA-based hardware acceleration with CPU software.

To address the IO bottleneck and relieve the CPU computational pressure, Ibex[34] and IBM Netezza [11] are near
storage query processing engines on FPGA performing decompression, restriction, and aggregation operations. [5]
further extends [7] and [8] with additional merge-join, sort, and reorder units in the partial reconfiguration module
suite. It also developed an energy-aware processing platform that utilizes AXI interfaces for communication with ARM
cores.

For integrating FPGA acceleration with real-world database systems, [32] accelerated OpenCL kernel operators on
FPGA in a GPU-based database system called OmniDB. [19, 25] modified the in-memory DBMS MonetDB software
stack to integrate FPGA accelerators by treating them as user-defined functions (UDF). And [33] integrated an FPGA
accelerator with their prototype DBMS system called FCAccel to speed up data extraction from SSDs for SQL processing.

While the research efforts mentioned above show great potential in FPGA-accelerated database operators and queries,
they are orthogonal to this paper, where we focus on the automatic compilation of SQL queries onto the CPU-FPGA
platform along with the FPGA-aware query plan optimizations. Glacier [16], one of the very few (outdated) query-
to-hardware compilers, supports direct translation from SQL queries to RTL code for FPGA. However, to accelerate
dynamic analytical processing queries, the repetitive, lengthy hardware synthesis time for every new query limits the
applicability of the tool.

5.2 Query Processing Acceleration on GPU

Previous research has also explored query acceleration on GPU. In [12], He et al. presented GDB, a CPU-GPU coprocess-
ing framework for accelerating in-memory relational database systems. Similar to our work, they implemented query
plan optimizations to partition operators and data between the CPU and GPU platforms. However, only basic operators
such as split and sort are offloaded to the GPU, whereas the FPGA overlay designs used in SQL2FPGA support most
query operators except sort. To fill the programming gap between SQL and GPU, Bakkum et al. implemented a subset
of the SQLite command processors directly on GPU [4]. In [35], a SQL to GPU compiler called Red Fox is presented
and demonstrates an average speedup of 6.48x over an optimized CPU implementation. However, the focus of query
plan optimizations targets GPU-only execution instead of a hybrid CPU-FPGA execution model. To improve the GPU
resource underutilization issue with the kernel-based execution in CPU-GPU co-processing frameworks, Paul et al.
proposed GPL [21], a pipelined execution engine that could achieve up to 48% performance improvement over the
kernel-based execution. It mainly focuses on configuration parameter tuning to improve hardware execution, which is
orthogonal to our work.

Manuscript submitted to ACM

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 25

5.3 Query Processing Acceleration on ASIC

While ASIC designs almost always guarantee superior performance and energy efficiency for acceleration, they
are inferior to FPGAs concerning the development cost, especially with the rapid changes in today’s computing
demands. In [36], Wu et al. developed a comprehensive set of ASIC-based operators, defined a domain-specific ISA,
and demonstrated a 70x speedup using simulation results over native MonetDB execution on CPU. It devised a
programmable spatial-array architecture to support all the basic operators but lacks the consideration of system
integration and evaluates only on small dataset size (i.e., 0.01GB). To support scaling for large dataset size, in [40], Xu
et al. presented an in-storage query processing engine to enable near SSD processing. It is orthogonal to our work
since we target in-memory databases. Also, we propose additional FPGA accelerator-aware compiler optimizations to
accelerate query processing.

6 CONCLUSION AND FUTUREWORK

In this paper, we have proposed an automatic compilation framework called SQL2FPGA for translating SQL queries to be
processed on the heterogeneous CPU-FPGA acceleration platform. To accelerate compute-intensive in-memory query
processing workloads, we first adopted overlay-based accelerator designs from AMD/Xilinx database library [37] that
provide flexible operator acceleration through runtime parameterization and are well supported on datacenter FPGAs.
To further improve the processing performance of the physical query plan execution, we have implemented a query
plan optimizer to 1) extend operator acceleration coverage, 2) eliminate redundant computation, and 3) minimize data
transfer overhead. Furthermore, we have utilized machine learning techniques to accurately decide the most efficient
platform for physical execution of query operations. Finally, we evaluated our framework by accelerating all 22 TPC-H
queries. Experimental results show that SQL2FPGA with AMD/Xilinx Ver.2020 overlay design on average achieves 10.1x
and 13.9x performance speedup under SF1 and SF30, respectively, compared to Spark SQL execution on a 24-thread CPU
server. Additionally, compared with AMD/Xilinx hand-written optimized acceleration code, SQL2FPGA also achieves
similar performance. Furthermore, while evaluated on AMD/Xilinx Alveo U50 FPGA boards, SQL2FPGA using Ver. 2022
AMD/Xilinx FPGA overlay designs also achieve an average speedup of 9.6x at 1GB scale. This work is open-sourced at:
https://github.com/SFU-HiAccel/SQL2FPGA.

For future work, we plan to promote wider impact of SQL2FPGA by exploring the integration with an actual big data
engine by exploring just-in-time compilation and optimizing the data transfer between CPU and FPGA.

ACKNOWLEDGEMENTS

This work is partly supported by NSERC Discovery Grant RGPIN-2019-04613, DGECR-2019-00120, Alliance Grant
ALLRP-552042-2020; CFI John R. Evans Leaders Fund; Huawei Canada and AMD-Xilinx. We thank AMD-Xilinx Vitis
database team, Prof. Jiannan Wang and Dr. Jinglin Peng from Simon Fraser University, for their insightful discussion
and technical support. We also thank the anonymous reviewers for their valuable feedback.

REFERENCES
[1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik. 2012. Learning-based Query Performance Modeling and Prediction.

In 2012 IEEE 28th International Conference on Data Engineering. 390–401.
[2] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali

Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’15). Association for Computing Machinery, 1383–1394.

Manuscript submitted to ACM

https://github.com/SFU-HiAccel/SQL2FPGA

26 Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang

[3] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for the Masses: The Programmability of FPGAs Must Improve If They Are
to Be Part of Mainstream Computing. Queue 11, 2 (feb 2013), 40–52.

[4] Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL Database Operations on a GPU with CUDA. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU-3). Association for Computing Machinery, 94–103.

[5] Andreas Becher, Florian Bauer, Daniel Ziener, and Jürgen Teich. 2014. Energy-aware SQL query acceleration through FPGA-based dynamic partial
reconfiguration. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL). 1–8.

[6] Jared Casper and Kunle Olukotun. 2014. Hardware Acceleration of Database Operations. In Proceedings of the 2014 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’14). Association for Computing Machinery, 151–160.

[7] Christopher Dennl, Daniel Ziener, and Jurgen Teich. 2012. On-the-fly Composition of FPGA-Based SQL Query Accelerators Using a Partially
Reconfigurable Module Library. In 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines. 45–52.

[8] Christopher Dennl, Daniel Ziener, and Jürgen Teich. 2013. Acceleration of SQL Restrictions and Aggregations through FPGA-Based Dynamic Partial
Reconfiguration. In 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines. 25–28.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark Silicon and the End of Multicore
Scaling. In Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA ’11). Association for Computing Machinery,
365–376.

[10] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee. 2019. In-Memory Database Acceleration on FPGAs: A Survey. The VLDB
Journal 29, 1 (oct 2019), 33–59.

[11] Phil Francisco et al. 2011. The Netezza data appliance architecture: A platform for high performance data warehousing and analytics.
[12] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and Pedro V. Sander. 2009. Relational Query Coprocessing on Graphics

Processors. ACM Trans. Database Syst. 34, 4, Article 21 (2009), 39 pages.
[13] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019.

X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD ’19). 651–665.

[14] Kristiyan Manev, Anuj Vaishnav, Charalampos Kritikakis, and Dirk Koch. 2019. Scalable Filtering Modules for Database Acceleration on FPGAs.
In Proceedings of the 10th International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART 2019). Association for
Computing Machinery, Article 4, 6 pages.

[15] MonetDB. 2022. MonetDB: The Database System to speed up your Analytical Jobs. https://www.monetdb.org/ Last accessed December 20, 2022.
[16] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2010. Glacier: A Query-to-Hardware Compiler. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’10). Association for Computing Machinery, 1159–1162.
[17] Kaspar Mätas, Kristiyan Manev, Joseph Powell, and Dirk Koch. 2022. Automated Generation and Orchestration of Stream Processing Pipelines on

FPGAs. In 2022 International Conference on Field-Programmable Technology (ICFPT). 1–10. https://doi.org/10.1109/ICFPT56656.2022.9974596
[18] Jian Ouyang, Wei Qi, Yong Wang, YichenTu, Jing Wang, and Bowen Jia. 2016. SDA: Software-Defined Accelerator for general-purpose big data

analysis system. In 2016 IEEE Hot Chips 28 Symposium (HCS). 1–23. https://doi.org/10.1109/HOTCHIPS.2016.7936221
[19] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017. Centaur: A Framework for Hybrid CPU-FPGA Databases. In 2017 IEEE 25th

Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 211–218.
[20] Ippokratis Pandis. 2021. The evolution of Amazon redshift. Proc. VLDB Endow. 14, 12 (jul 2021), 3162–3174.
[21] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-Based Pipelined Query Processing Engine. In Proceedings of the 2016 International

Conference on Management of Data (SIGMOD ’16). Association for Computing Machinery, 1935–1950.
[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 85 (2011), 2825–2830.

[23] PostgreSQL. 2022. PostgreSQL: The World’s Most Advanced Open Source Relational Database. https://www.postgresql.org/ Last accessed December
20, 2022.

[24] J. Ross Quinlan. 1986. Induction of Decision Trees. Machine Learning 1 (1986), 81–106.
[25] David Sidler, Muhsen Owaida, Zsolt István, Kaan Kara, and Gustavo Alonso. 2017. doppioDB: A hardware accelerated database. In 2017 27th

International Conference on Field Programmable Logic and Applications (FPL). 1–1.
[26] Apache Spark. 2022. Unified engine for large-scale data analytics. https://spark.apache.org/ Last accessed December 20, 2022.
[27] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. 2012.

Database Analytics Acceleration Using FPGAs. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques
(PACT ’12). Association for Computing Machinery, 411–420.

[28] Bharat Sukhwani, Mathew Thoennes, Hong Min, Parijat Dube, Bernard Brezzo, Sameh Asaad, and Donna Dillenberger. 2013. Large Payload
Streaming Database Sort and Projection on FPGAs. In 2013 25th International Symposium on Computer Architecture and High Performance Computing.
25–32.

[29] Bharat Sukhwani, Mathew Thoennes, Hong Min, Parijat Dube, Bernard Brezzo, Sameh Asaad, and Donna Dillenberger. 2015. A Hardware/Software
Approach for Database Query Acceleration with FPGAs. Int. J. Parallel Program. 43, 6 (2015), 1129–1159.

[30] TPC. 2022. TPC-DS is a Decision Support Benchmark. https://www.tpc.org/tpcds/ Last accessed December 20, 2022.

Manuscript submitted to ACM

https://www.monetdb.org/
https://doi.org/10.1109/ICFPT56656.2022.9974596
https://doi.org/10.1109/HOTCHIPS.2016.7936221
https://www.postgresql.org/
https://spark.apache.org/
https://www.tpc.org/tpcds/

SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 27

[31] TPC. 2022. TPC-H is a Decision Support Benchmark. https://www.tpc.org/tpch/ Last accessed December 20, 2022.
[32] Zeke Wang, Johns Paul, Hui Yan Cheah, Bingsheng He, and Wei Zhang. 2016. Relational query processing on OpenCL-based FPGAs. In 2016 26th

International Conference on Field Programmable Logic and Applications (FPL). 1–10.
[33] Satoru Watanabe, Kazuhisa Fujimoto, Yuji Saeki, Yoshifumi Fujikawa, and Hiroshi Yoshino. 2019. Column-Oriented Database Acceleration Using

FPGAs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). 686–697.
[34] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: An Intelligent Storage Engine with Support for Advanced SQL Offloading. Proc. VLDB

Endow. 7, 11 (2014), 963–974.
[35] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael Garland, and Sudhakar Yalamanchili. 2014. Red Fox: An Execution

Environment for Relational Query Processing on GPUs. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’14). Association for Computing Machinery, 44–54.

[36] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross. 2014. Q100: The Architecture and Design of a Database
Processing Unit. In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’14). Association for Computing Machinery, 255–268.

[37] Xilinx. 2022. Vitis Database Library. https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-database.html Last accessed December
20, 2022.

[38] Xilinx. 2023. Alveo U280 Data Center Accelerator Card Data Sheet (DS963). https://docs.xilinx.com/r/en-US/ds963-u280/Summary Last accessed
December 20, 2023.

[39] Xilinx. 2023. Alveo U50 Data Center Accelerator Card Data Sheet. https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/
ds965-u50.pdf Last accessed Dec 12, 2023.

[40] Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and Arvind Arvind. 2020. AQUOMAN: An Analytic-Query Offloading
Machine. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 386–399.

[41] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He, Feifei Li, Wei Cao, Zhongdong Huang,
and Jianling Sun. 2020. FPGA-Accelerated Compactions for LSM-Based Key-Value Store. In Proceedings of the 18th USENIX Conference on File and
Storage Technologies (FAST’20). USENIX Association, 225–238.

[42] Daniel Ziener, Florian Bauer, Andreas Becher, Christopher Dennl, Klaus Meyer-Wegener, Ute Schürfeld, Jürgen Teich, Jörg-Stephan Vogt, and
Helmut Weber. 2016. FPGA-Based Dynamically Reconfigurable SQL Query Processing. ACM Trans. Reconfigurable Technol. Syst. 9, 4, Article 25 (aug
2016), 24 pages.

Manuscript submitted to ACM

https://www.tpc.org/tpch/
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-database.html
https://docs.xilinx.com/r/en-US/ds963-u280/Summary
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds965-u50.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds965-u50.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Query Processing
	2.2 Potential of FPGA Acceleration for Query Processing

	3 SQL2FPGA System Design
	3.1 Compilation Overview
	3.2 Vendor-Agnostic Query Plan Representation
	3.3 FPGA Accelerator Overlay Design
	3.4 CPU C++ Operator Design
	3.5 Compiler Optimizations for Query Plan
	3.6 Machine Learning to Predict Execution Platform

	4 Results and Analysis
	4.1 Experimental Setup
	4.2 Overall Performance Improvement
	4.3 Speedup for Different Optimization Passes
	4.4 Performance Comparison Ver.2020 Vs Ver.2022
	4.5 Machine Learning Guide Platform Selection Performance
	4.6 Performance Evaluation on TPC-DS Benchmark Queries

	5 Related Work
	5.1 Query Processing Acceleration on FPGA
	5.2 Query Processing Acceleration on GPU
	5.3 Query Processing Acceleration on ASIC

	6 Conclusion and Future Work
	References

