
Programming and Runtime Support to Blaze
FPGA Accelerator Deployment at Datacenter Scale

Muhuan Huang?1,2, Di Wu?1,2, Cody Hao Yu?1, Zhenman Fang1, Matteo Interlandi1,
Tyson Condie1 and Jason Cong1

1University of California Los Angeles, 2 Falcon Computing Solutions, Inc.
{mhhuang, allwu, hyu, zhenman, minterlandi, tcondie, cong}@cs.ucla.edu

Abstract
With the end of CPU core scaling due to dark silicon limi-
tations, customized accelerators on FPGAs have gained in-
creased attention in modern datacenters due to their lower
power, high performance and energy efficiency. Evidenced
by Microsoft’s FPGA deployment in its Bing search en-
gine and Intel’s 16.7 billion acquisition of Altera, integrat-
ing FPGAs into datacenters is considered one of the most
promising approaches to sustain future datacenter growth.
However, it is quite challenging for existing big data com-
puting systems—like Apache Spark and Hadoop—to access
the performance and energy benefits of FPGA accelerators.

In this paper we design and implement Blaze to provide
programming and runtime support for enabling easy and ef-
ficient deployments of FPGA accelerators in datacenters. In
particular, Blaze abstracts FPGA accelerators as a service
(FaaS) and provides a set of clean programming APIs for
big data processing applications to easily utilize those ac-
celerators. Our Blaze runtime implements an FaaS frame-
work to efficiently share FPGA accelerators among mul-
tiple heterogeneous threads on a single node, and extends
Hadoop YARN with accelerator-centric scheduling to effi-
ciently share them among multiple computing tasks in the
cluster. Experimental results using four representative big
data applications demonstrate that Blaze greatly reduces the
programming efforts to access FPGA accelerators in systems
like Apache Spark and YARN, and improves the system
throughput by 1.7× to 3× (and energy efficiency by 1.5×
to 2.7×) compared to a conventional CPU-only cluster.

Categories and Subject Descriptors C.1.3 [Computer Sys-
tems Organization]: Heterogeneous (hybrid) systems

Keywords FPGA-as-a-service, heterogeneous datacenter

?Author names are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’16 October, 2016, Santa Clara, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4525-5/16/10. . . $15.00.
DOI: 2987550.2987569

1. Introduction
Modern big data processing systems, such as Apache
Hadoop [1] and Spark [47], have evolved to an unprece-
dented scale. As a consequence, cloud service providers,
such as Amazon, Google and Microsoft, have expanded their
datacenter infrastructures to meet the ever-growing demands
for supporting big data applications. However, due to the
problem of dark silicon [21], simple CPU core scaling has
come to an end, and thus CPU performance and energy effi-
ciency has become one of the primary constraints in scaling
such systems. To sustain the continued growth in data and
processing methods, cloud providers are seeking new solu-
tions to improve the performance and energy efficiency for
their big data workloads.

Among various solutions that harness GPU (graphcs pro-
cessing unit), FPGA (field-programmable gate array), and
ASIC (application-specific integrated circuit) accelerators in
a datacenter, the FPGA-enabled datacenter has gained in-
creased attention and is considered one of the most promis-
ing approaches. This is because FPGAs provide low power,
high energy efficiency and reprogrammability to customize
high-performance accelerators. One breakthrough example
is that Microsoft has deployed FPGAs into its datacenters to
accelerate the Bing search engine with almost 2x through-
put improvement while consuming only 10% more power
per CPU-FPGA server [33]. Another example is IBM’s de-
ployment of FPGAs in its data engine for large NoSQL data
stores [13]. Moreover, Intel, with the $16.7 billion acquisi-
tion of Altera, is providing closely integrated CPU-FPGA
platforms for datacenters [12], and is targeting the produc-
tion of around 30% of the servers with FPGAs in datacenters
by 2020 [6].

With the emerging trend of FPGA-enabled datacenters,
one key question is: How can we easily and efficiently deploy
FPGA accelerators into state-of-the-art big data computing
systems like Apache Spark [47] and Hadoop YARN [42]?
To achieve this goal, both programming abstractions and
runtime support are needed to make these existing systems
programmable to FPGA accelerators. This is challenging for
the following reasons.
1. Unlike conventional CPU and GPU targeted programs,

compiling an FPGA program can take several hours,
which makes existing runtime systems that use dynamic
code generation for CPU-GPU datacenters, such as Dan-

delion [35], HadoopCL [22] and SWAT [23], not applica-
ble for FPGAs.

2. State-of-the-art big data systems like Apache Hadoop
and Spark compile to the Java Virtual Machine (JVM),
while FPGA accelerators are usually manipulated by
C/C++/OpenCL. Even with predesigned FPGA acceler-
ators, there are still excessive programming efforts re-
quired to i) integrate them with the JVM, ii) share an
accelerator among multiple threads or multiple applica-
tions, and iii) share an FPGA platform by multiple accel-
erators of different functionalities.

3. A straightforward JNI (Java Native Interface) integra-
tion of FPGA accelerators can diminish or even degrade
the overall performance (up to 1000X slowdown) due to
the overwhelming JVM-to-native-to-FPGA communica-
tion overhead [15].

4. It usually takes several seconds to reprogram an FPGA
into a different accelerator (with a different function-
ality). A frequent FPGA reprogramming in a multi-
accelerator scenario can significantly degrade the overall
system performance. This raises a fundamental question:
Do we manage ”the hardware platform itself” or ”the
logical accelerator (functionality) running on top of the
hardware platform” as a resource?

To address these challenges, we design and implement
Blaze: a framework that provides a programming abstrac-
tion and runtime support for easy and efficient FPGA de-
ployments in datacenters. This paper describes the Blaze ar-
chitecture and makes the following contributions.
1. Programming APIs that enable big data processing appli-

cations to leverage FPGA accelerators to perform task-
level work. We abstract FPGA accelerators as a service
(FaaS), which decouples the hardware accelerator de-
velopment of data processing tasks (i.e., Spark transfor-
mations) and big data processing logic (i.e., scheduling
tasks, shuffling data, etc.).1

2. Policies for managing logical accelerator functionality —
instead of the physical hardware platform itself—as a
resource, where better scheduling decisions can be made
to optimize the system throughput and energy efficiency.

3. An efficient runtime to share FPGA accelerators in data-
centers, where an FaaS framework is implemented to
support sharing of accelerators among multiple threads
and multiple applications in a single node. Also, an
accelerator-centric scheduling is proposed for the global
accelerator management to alleviate the FPGA repro-
gramming overhead for multi-accelerators. Finally sev-
eral well-known optimization techniques—such as data
caching and task pipelining—are employed to reduce the
JVM-to-FPGA communication overhead.

4. An open-source prototype that is compatible with exist-
ing ecosystems like Apache Spark with no code changes
and YARN with a lightweight patch. Our goal is to bring

1While Blaze does support GPU accelerators as well, this paper will
mainly focus on FPGA accelerators which have not been studied before.

FPGA accelerator developers, big data application devel-
opers, and system architects together, to blaze the deploy-
ment of accelerators in datacenters.2

2. Background
There has been great success in programming frameworks
that enable efficient development and deployment of big data
applications in conventional datacenters, i.e., composed of
general-purpose processors. In this section we briefly intro-
duce Apache Spark [47]— our target big data processing
framework— and the Hadoop YARN resource manager [42],
which we use to expose FPGA resources in a cluster environ-
ment. We also give a quick tutorial of FPGA accelerators.

2.1 Apache Spark
Apache Spark [47] is a widely used fast and general large-
scale data processing framework. It exposes a programming
model based on Resilient Distributed Datasets (RDDs) [46].
The RDD abstraction provides transformations (e.g., map,
reduce, filter, join, etc.) and actions (e.g., count, collect) that
operate on datasets partitioned over a cluster of nodes. A
typical Spark program executes a series of transformations
ending with an action that returns a singleton value (e.g., the
record count of an RDD) to the Spark driver program, which
could then trigger another series of RDD transformations.

Spark caches reused data blocks in memory, often
achieving significant performance speedup over the Hadoop
MapReduce [1] on iterative applications such as machine
learning. Recent studies [9, 32] show that Spark applications
are often computation-bound instead of IO or network bound
in conventional Hadoop applications. This motivates us to
leverage FPGAs to further accelerate the computation.

Spark can be run standalone on a cluster, or with a re-
source manager like Hadoop YARN [42]. For each Spark
application submitted to the YARN cluster, a set of contain-
ers (see Section 2.2) is gathered from the resource manager
matching the available resources and the application con-
figuration. For each acquired container, the Spark context
launches an executor: a JVM instance providing the base
runtime for the execution of the actual data-processing com-
putation (i.e., tasks), and managing the application data.

2.2 Apache YARN
YARN (Yet Another Resource Negotiator) is a widely used
cluster resource management layer in the Hadoop system
that allocates resources, such as CPU and memory, to mul-
tiple big data applications (or jobs). Figure 1 shows a high-
level view of the YARN architecture. A typical YARN setup
would include a single resource manager (RM) and several
node managers (NM) installations. Each NM typically man-
ages the resources of a single machine, and periodically re-
ports to the RM, which collects all NM reports and formu-
lates a global view of the cluster resources. The periodic NM

2Blaze can be downloaded from github: https://github.com/UCLA-
VAST/blaze. Blaze has already been used by multiple groups at Intel Labs
to deploy accelerators composed of the Intel-Altera Heterogeneous Accel-
erator Research Platforms (HARP CPU-FPGA platforms).

Client RM
AM

NM

NM

Container
Container

Job	submission
Note	status
Application	status
Resource	request

Figure 1: Example YARN architecture showing a client sub-
mitting jobs to the global resource manager.

reports also provide a basis for monitoring the overall cluster
health at the RM, which notifies relevant applications when
failures occur.

A YARN job is represented by an application master
(AM), which is responsible for orchestrating the job’s work
on allocated containers i.e., a slice of machine resources
(some amount of CPU, RAM, disk, etc.). A client submits
an AM package—that includes a shell command and any
files (i.e., binary executable configurations) needed to exe-
cute the command—to the RM, which then selects a single
NM to host the AM. The chosen NM creates a shell envi-
ronment that includes the file resources, and then executes
the given shell command. The NM monitors the containers
for resource usage and exit status, which the NM includes in
its periodic reports to the RM. At runtime, the AM uses an
RPC interface to request containers from the RM, and to ask
the NMs that host its containers to launch a desired program.
Returning to Figure 1, we see the AM instance running with
allocated containers executing a job-specific task.

To manage heterogeneous computing resources in the
datacenter and provide placement control, YARN recently
introduced a mechanism called label-based scheduling. Ad-
ministrators can specify labels for each server node and ex-
pose the label information to applications. The YARN re-
source manager then schedules the resource to an application
only if the node label matches with the application-specified
label. Examples of node labels can be an FPGA or GPU,
which indicate that the nodes are equipped with a special
hardware platform.

2.3 FPGAs
A field-programmable gate array (FPGA) is a reconfigurable
integrated circuit with much lower power consumption com-
pared to CPUs and GPUs. Since an FPGA is essentially
customizable hardware, it can achieve significant perfor-
mance speedup despite its low clock frequency. Many fac-
tors contribute to the efficiency of FPGA. For example,
application-specific computation pipelines can be designed
to avoid the conventional instruction fetching and decoding
overhead. The data access can also be customized to sig-
nificantly improve the data reuse. Processing elements of
customized computation pipelines can also be duplicated to
scale the performance by data parallelism. Because of these
techniques and FPGA’s energy efficiency, it has been widely

adopted in recent years for accelerating the computation-
intensive kernels in standalone applications; it achieved 18x
to more than 300x kernel speedups [16, 18, 28, 48].

An FPGA implementation is usually based on a hardware
description languages (HDL) such as Verilog and VHDL,
and it requires a comprehensive knowledge of hardware. Re-
cent development of high-level synthesis (HLS) [19] allows
programmers to use a C-based language to design FPGA
accelerators. However, the learning-curve for FPGA pro-
gramming is usually very steep for software programmers,
since the optimal implementation still requires a significant
amount of FPGA-specific knowledge.

Due to the power wall and dark silicon [21], FPGA accel-
eration has become increasingly promising, and OpenCL has
emerged as a standard framework for FPGA programming.
However, there are several fundamental differences between
OpenCL applications for FPGA and GPU. Since the archi-
tecture of GPU is fixed, GPU programs can be compiled us-
ing a just-in-time (JIT) compiler on the fly. FPGAs, on the
other hand, are flexible on the architecture level, but require
a much longer compilation time (often several hours). This
means that an FPGA accelerator has to be generated in ad-
vance as a library, and loaded in an OpenCL host program at
runtime. Moreover, the OpenCL support for FPGAs is still at
an early stage compared to that for GPUs. For example, the
Xilinx OpenCL implementation does not support FPGA ac-
celerator sharing by multiple applications. This further mo-
tivates our FaaS design for transparent and efficient FPGA
accelerator sharing.

3. Blaze System Overview
We design Blaze as a generic system to enable big data appli-
cations to easily access FPGA accelerators and implement it
as a third-party package that works with existing ecosystems
(i.e., Apache Spark and Hadoop YARN), with lightweight
changes. Here we give an overview of the Blaze program-
ming and runtime support and discuss how we address the
challenges listed in Section 1.

To provide an easy-to-use programming interface, we ab-
stract FPGA accelerators as a service (FaaS) and propose
to decouple the software development of big data applica-
tions and the hardware development of FPGA accelerators.
This means hardware experts can make the best effort to op-
timize the accelerator design without being burdened with
application complexity, and software developers do not need
to be aware of tedious hardware details to take advantage
of accelerators. Currently, Blaze provides a set of APIs for
Spark programs to offload map computations onto accelera-
tors without any change to the Spark framework. All Spark
programmers have to do is to register the pre-defined FPGA
accelerators (developed by hardware experts) into Blaze as a
service, and call the Blaze API to access the customized ac-
celerators. All the accelerator sharing and management logic
are transparently handled by our Blaze runtime.

The Blaze runtime system integrates with Hadoop YARN
to manage accelerator sharing among multiple applications.

Client RM
AM

NM

NM

Container	

Container	

Job	submission	
Accelerator	status	
Applica4on	data	
Resource	request	

GAM
NAM

NAM

FPGA	

GPU	

Global Accelerator Manager
accelerator-centric scheduling

Node Accelerator Manager
FaaS, JVM-to-FPGA communication optimization

GAM

NAM

Figure 2: Overview of Blaze runtime system.

As illustrated in Figure 2, Blaze includes two levels of accel-
erator management. A global accelerator manager (GAM)
oversees all the accelerator resources in the cluster and dis-
tributes them to various user applications. Node accelera-
tor managers (NAMs) sit on each cluster node and pro-
vide transparent accelerator1 access to a number of hetero-
geneous threads from multiple applications. After receiving
the accelerator computing resources from GAM, the Spark
application begins to offload computation to the accelera-
tors through NAM. NAM monitors the accelerator status,
handles JVM-to-FPGA data movement and accelerator task
scheduling. NAM also performs a heartbeat protocol with
GAM to report the latest accelerator status.

We summarize the key features of Blaze as follows.
1. FPGA accelerators as a service (FaaS). The most im-

portant role of NAM in Blaze runtime is providing trans-
parent FaaS shared by multiple application jobs (run on
the same node) that request accelerators in a fashion sim-
ilar to software library routines. Each “logical accelera-
tor” library routine exposes a predefined functionality to a
Spark program, and can be composed of multiple “phys-
ical accelerators” on multiple hardware platforms (e.g.,
two FPGAs, or one FPGA and one GPU). FaaS automat-
ically manages the task scheduling between logical and
physical accelerators. For example, multiple physical ac-
celerators can be allocated for a single logical acceler-
ator for performance-demanding applications, while one
physical accelerator can be shared across multiple logical
accelerators if each has a low utilization of that physical
accelerator.

2. Accelerator-centric scheduling. In order to solve the
global application placement problem considering the
overwhelming FPGA reprogramming overhead, we pro-
pose to manage the logical accelerator functionality, in-
stead of the physical hardware itself, as a resource to re-
duce such reprogramming overhead. We extend the label-
based scheduling mechanism in YARN to achieve this
goal: instead of configuring node labels as ‘FPGA’, we
propose to use accelerator functionality (e.g., ‘KMeans-
FPGA’, ‘Compression-FPGA’) as node labels. This helps

us to differentiate applications that are using the FPGA
devices to perform different computations. Therefore, we
can delay the scheduling of accelerators with different
functionalities onto the same FPGA to avoid reprogram-
ming as much as possible. Different from the current
YARN solution, where node labels are configured into
YARN’s configuration files, node labels in Blaze are con-
figured into NAM through command-line. NAM then re-
ports the accelerator information to GAM through heart-
beats, and GAM configures these labels into YARN.

3. Hiding JVM-to-FPGA communication. We also em-
ploy well-known techniques such as data caching and
task pipelining in FaaS to hide the overwhelming JVM-
to-native-to-FPGA communication overhead.

4. Fault tolerance. The FaaS design in each NAM also
helps the fault tolerance of the system. Whenever a fault
in the accelerator hardware occurs, NAM can allocate
different hardware to fulfill the request, or fallback to
CPU execution when no more accelerators are available.

5. Facilitating rolling upgrades. FaaS makes it easy to
configure heterogeneous accelerator resources on com-
pute nodes in the datacenter, facilitating rolling upgrades
of next-generation accelerator hardware and making the
system administration of large-scale heterogeneous data-
centers more scalable.
In summary, the easy-to-use programming interface,

transparent FaaS, and the accelerator-centric scheduling of
Blaze makes FPGA accelerator deployment at datacenter
scale much easier than existing approaches. Note that the
FaaS framework for NAM is provided as a third-party pack-
age without any change to Apache Spark, while accelerator-
centric scheduling for GAM and NAM is provided as a
lightweight patch to Hadoop YARN. In Section 4 and Sec-
tion 5, we will present more details about the Blaze program-
ming interface and runtime implementation.

4. Blaze Programming Interface
In this section we first describe the programming interfaces
of Blaze from two aspects: how to write a big data applica-
tion that invokes FPGA accelerators, and how to design and
register an FPGA accelerator into Blaze. Then we present
our support for data serialization during data transfer be-
tween JVM and accelerators.

4.1 Application Programming Interface
We implement Blaze as a third-party package that works
with the existing Spark framework3 without any modifica-
tion of Spark source code. Thus, Blaze is not specific to a
particular version of Spark. Moreover, the Blaze program-
ming model for user applications is designed to support
accelerators with minimal code changes. To achieve this,
we extend the Spark RDD to AccRDD which supports ac-
celerated transformations. We explain the detailed usage of
AccRDD in Listing 1 with an example of logistic regression.

3Blaze also supports C++ applications with similar interfaces, but we
will mainly focus on Spark applications in this paper.

Listing 1: Blaze application example (Spark Scala)
val points = sc.textFile(filePath).cache()
val train = blaze.wrap(points)
for (i <- 0 until ITERATIONS) {
bcW = sc.broadcast(weights)
val gradients = train.map(

new LogisticAcc(bcW)).reduce(a + b)
weights -= gradients

}
class LogisticAcc(w: Broadcast_var[V])

extends Accelerator[T, U] {
val id: String = "LRGradientCompute"
def call(p: T): U = {
localGradients.compute(p, w.value)

}
...

}

In Listing 1, training data samples are loaded from a
file and stored to an RDD points, and are used to train
weights by calculating gradients in each iteration. To ac-
celerate the gradient calculation with Blaze, first the RDD
points needs to be extended to AccRDD train by call-
ing the Blaze API wrap. Then an accelerator function,
LogisticAcc, can be passed to the .map transformation
of the AccRDD. This accelerator function is extended from
the Blaze interface Accelerator by specifying an accel-
erator id and an optional compute function for the fall-
back CPU execution. The accelerator id specifies the desired
accelerator service, which in the example is “LRGradient-
Compute”. The fall-back CPU function will be called when
the accelerator service is not available. This interface is pro-
vided with fault-tolerance and portability considerations. In
addition, Blaze also supports caching for Spark broadcast
variables to reduce JVM-to-FPGA data transfer. This will be
elaborated in Section 5.3.

The application interface of Blaze can be used by library
developers as well. For example, Spark MLlib developers
can include Blaze-compatible codes to provide acceleration
capabilities to end users. With Blaze, such capabilities are
independent of the execution platform. When accelerators
are not available, the same computation will be performed
on CPU. In this case, accelerators will be totally transparent
to the end users. In our evaluation, we created several im-
plementations for Spark MLlib algorithms such as logistic
regression and K-Means using this approach.

4.2 Accelerator Programming Interface
For accelerator designers, the programming experience is
decoupled with any application-specific details. An example
of the interface implementing the “LRGradientCompute”
accelerator in the prior subsection is shown in Listing 2.

Our accelerator interface hides details of FPGA accelera-
tor initialization and data transfer by providing a set of APIs.
In this implementation, for example, the user inherits the
provided template, Task, and the input and output data can
be obtained by simply calling getInput and getOutput
APIs. No explicitly OpenCL buffer manipulation is neces-
sary for users. The runtime system will prepare the input

data and schedule it to the corresponding task. The accelera-
tor designer can use any available programming framework
to implement an accelerator task as long as it can be inte-
grated with an interface in C++.

Listing 2: Blaze accelerator example (C++)
class LogisticTask : public Task {
public:
LogisticTask(): Task(NUM_ARGS)
// overwrite the compute function
virtual void compute() {
int num_elements = getInputLength(...);
double *in = (float*)getInput(...);
double *out = (float*)getOutput(...);
// perform computation
...

}
};

4.3 Serialization Support
The input and output data of Spark tasks need to be serial-
ized and deserialized respectively before they are transferred
to and from accelerator platforms. Blaze implementation in-
cludes its own (de)serializer for primitive data types, because
the existing Java version is not sufficient for handling the
data layout for accelerators. In addition, Blaze also provides
an interface to users to implement their own (de)serializer
methods. As a result, users are allowed to use arbitrary data
types in the Spark application as long as the corresponding
(de)serializer is able to process data to match the accelerator
interface.

5. Blaze Runtime Support
In this section, we present our Blaze runtime support, includ-
ing the FaaS implementation to share accelerators among
multiple heterogeneous threads in a single node, accelerator-
centric scheduling to alleviate the FPGA reprogramming
overhead, communication optimization to alleviate the JVM-
to-FPGA overhead, and fault tolerance and security support.

5.1 FPGA-as-a-Service (FaaS)
Blaze facilitates FaaS in NAM through two levels of queues:
task queues and platform queues. The architecture of NAM
is illustrated in Figure 3. Each task queue is associated with
a “logical accelerator”, which represents an accelerator li-
brary routine. When an application task requests a specific
accelerator routine, the request is put into the corresponding
task queue. Each platform queue is associated with a “phys-
ical accelerator”, which represents an accelerator hardware
platform such as an FPGA board. The tasks in task queue
can be executed by different platform queues depending on
the availability of the implementations. For example, if both
GPU and FPGA implementations of the same accelerator li-
brary routine are available, the task of that routine can be
executed on both devices.

This mechanism is designed with three considerations: 1)
application-level accelerator sharing, 2) minimizing FPGA
reprogramming, and 3) efficient overlapping of data transfer
and accelerator execution to alleviate JVM-to-FPGA over-

NAM

Task
Queue

Task
Queue

Task
Queue

Platform Queue Platform Queue

FPGA FPGA

Task Scheduler

Application Scheduler

Task Task

Task Task

Task

Figure 3: Node accelerator manager design to enable FPGA
accelerators as a service (FaaS).

head. We elaborate the first two considerations in the rest of
this subsection, and discuss 3) in Section 5.3.

In Blaze, accelerator devices are owned by NAM rather
than individual applications. The reasoning behind this de-
sign is our observations that in most big data applications,
the accelerator utilization is less than 50%. If the acceler-
ator is owned by a specific application, then much of the
time it will be spent in idle, wasting energy. The application-
level sharing inside NAM is managed by a scheduler that
sits between application requests and task queues. In this pa-
per, a simple first-come-first-serve scheduling policy is im-
plemented. We leave the exploration of different policies to
future work.

The downside of providing application sharing is the ad-
ditional overheads of data transfer between the application
process and NAM process. For latency-sensitive applica-
tions, Blaze also offers a reservation mode where the accel-
erator device is reserved for a single application, i.e., a NAM
instance will be launched inside the application process.

The design of the platform queue focuses on mitigat-
ing the large overhead in FPGA reprogramming. For a
processor-based accelerator such as GPU to begin execut-
ing a different “logical accelerator”, it simply means load-
ing another program binary, which incurs minimum over-
head. With FPGA, on the other hand, the reprogramming
takes much longer. An FPGA device contains an array of
logic cells, and the programming is effectively configuring
the logic function and connection of each cell. Each con-
figuration is called a “bitstream”, and it typically takes 1∼2
seconds to program an FPGA with a given bitstream. Such
a reprogramming overhead makes it impractical to use the
same scheme as the GPU in the runtime system. In Blaze,
a second scheduler sits between task queues and platform
queues to avoid frequent reprogramming of the same FPGA
device. More details about the scheduling policy will be pre-
sented in the next subsection.

5.2 Accelerator-centric Scheduling
In order to mitigate the FPGA reprogramming overhead, it
is better to group the tasks that need the same accelerator to
the same set of nodes. The ideal situation is that each cluster

Node labels
gradient distance sum

App1 container App2 container

Node labels
gradient distance sum

App3 container App4 container

Node labels
gradient distance sum

App1 container App3 container

Node labels
gradient distance sum

App2 container App4 container

(a) Naive allocation: applications on a node use different ac-
celerators which leads to frequent FPGA reprogramming.

Node labels
gradient distance sum

App1 container App2 container

Node labels
gradient distance sum

App3 container App4 container

Node labels
gradient distance sum

App1 container App3 container

Node labels
gradient distance sum

App2 container App4 container

(b) Ideal allocation: applications on the node use the same
accelerator and thus there is no FPGA reprogramming

Figure 4: Different resource allocation policies. In this ex-
ample, each cluster node has one FPGA platform and two
accelerator implementations, “gradient” and “distance sum”.
Four applications are submitted to the cluster, requesting dif-
ferent accelerators.

node only gets the tasks that are requesting the same accel-
erator, in which case FPGA reprogramming is not needed.
Figure 4 illustrates that grouping accelerator tasks can re-
duce FPGA reprogramming overhead.

By managing logical accelerator functionality as a re-
source, we propose an accelerator-locality-based delay
scheduling policy to dynamically partition the cluster at run-
time, avoiding launching mixed FPGA workloads on the
same cluster node as much as possible. During accelerator
allocation in GAM, we consider the nodes in the following
order as scheduling priorities: 1) the idle nodes that do not
have any running containers; 2) the nodes that run similar
workloads; 3) the nodes that run a different set of work-
loads. Specifically, we define an affinity function to describe
ith node’s affinity to an application as fi =

nacc
n , where nacc

is the number of containers on this node that use the same
logical accelerator (or label), and n is the total number of
containers on this node. A node with higher affinity repre-
sents a better scheduling candidate. An idle node which has
zero running containers has the highest affinity and is con-
sidered the best scheduling candidate. GAM tries to honor
nodes with higher accelerator affinity by using the so-called
delay scheduling.

At runtime, each NAM periodically sends a heartbeat to
the GAM, which represents a scheduling opportunity. The
GAM scheduler does not simply use the first scheduling op-
portunity it receives. Instead, it may skip a few scheduling
opportunities and wait a short amount of time for a schedul-
ing opportunity with a better accelerator affinity. In our im-
plementation, we maintain a threshold function for each ap-
plication, which linearly decreases as the number of missed
scheduling opportunities increases. A container is allocated
on a node only if the node’s accelerator affinity is higher than
the threshold function.

5.3 Hiding JVM-to-FPGA Communication
In order for a Spark program to transfer data to an FPGA ac-
celerator, the data has to be first moved from JVM to the na-
tive machine, and then moved to the FPGA device memory
through a PCIe connection. Such data movement between
the host CPU and FPGA accelerators sometimes can dimin-
ish or even degrade the overall system performance [15].
To mitigate such overhead, Blaze adopts the following well-
known techniques within the FaaS framework.
1. Task pipelining. Most datacenter workloads will have

multiple threads/tasks sharing the same accelerator,
which creates an opportunity to hide data transfer with
task execution by pipelining: the task queue in NAM
adopts an asynchronous communication scheme that
overlaps JVM-to-FPGA data communication with FPGA
accelerator execution.

2. FPGA data caching. Many big data applications like
machine learning use iterative algorithms that repeatedly
perform computation on the same set of input data. This
provides the opportunity to cache the data on the FPGA
device memory and thus avoid the most time-consuming
native-to-FPGA data movement through PCIe. To be
more specific, our FaaS framework implements a Block
Manager to maintain a data reuse table that records the
mapping from the native data block to the FPGA de-
vice memory block. For the case of OpenCL, Block Man-
ager manages a table of cl buffer objects which are
mapped to device memory. A flag is used to indicate
whether the programmer wants Blaze to cache an input
data block. In Spark, the flag is automatically assigned if
the user specifies .cache() for the input RDD.

3. Broadcast data caching. Most data analytic frameworks
such as Spark support data sharing across the cluster
nodes. In Spark, this is provided as broadcast data. Simi-
larly, Blaze also supports a broadcast data caching to min-
imize data transfer across the cluster nodes. A broadcast
block only needs to be transferred to the NAM once, and
it will be cached inside the Block Manager throughout the
application’s life cycle.

5.4 Fault Tolerance and Security Issues
Fault tolerance is inherent in our proposed transparent accel-
erator scheduling. All accelerator-related errors are caught
at the application level, and the CPU implementation will
be used to resume the execution. Errors of accelerators in
NAM are handled in a similar fashion as Spark or YARN. A
counter is used for each accelerator task per platform, keep-
ing track of the number of errors incurred. If the failure is
persistent for one accelerator task, it will be removed from
NAM’s configuration. This information will also be propa-
gated to GAM in the heartbeat signals, and GAM will re-
move the corresponding label for this node.

Based on the description of the Blaze accelerator inter-
face in Section 4.2, the accelerator task implementation only
has access to its private input data through the provided inter-

face, such as getInput(). The data can only be assigned
by NAM based on the dependency, and all input data is read-
only. Our underlying platform implementation is based on
existing accelerator runtime systems such as OpenCL, so we
rely on the runtime implementation to guarantee security at
the device level. In general, the security issues in FPGA-
enabled datacenters will be an open and interesting direction
for future work.

6. Experimental Results
Now we evaluate the programming efforts and system per-
formance of deploying FPGA accelerators in datacenters us-
ing Blaze. First we present the hardware and software setup,
and describe the four representative large-scale applications
we chose that cover two extremes: iterative algorithms like
machine learning, and streaming algorithms like compres-
sion and genome sequencing. We evaluate the programming
efforts to write these applications using Blaze in terms of
lines-of-code (LOC). Then we evaluate the overall system
speedup and energy savings for each individual application
by putting FPGA accelerators into the cluster. We also ana-
lyze the FaaS overhead and break down the performance im-
provement of each optimization. Finally, we analyze multi-
job executions and the efficiency of our accelerator-centric
scheduling policy in the global accelerator management.

6.1 Experimental Setup
The experimental platform we use is a local standard
CPU cluster with up to 20 nodes, among which 4 nodes4

are integrated with FPGA cards using PCI-E slots. Each
server has dual-socket Intel Xeon E5-2620v3 CPUs with
12 cores in total and 64GB of main memory. The FPGA
card is AlphaData ADM-PCIE-7V3, which contains a Xilinx
Virtex-7 XC7VX690T-2 FPGA chip and 16GB of on-board
DDR3 memory. The FPGA board can be powered by PCI-E
alone and consumes around 25W, which makes it deployable
into commodity datacenters.

The software framework is based on a community version
of Spark 1.5.1 and Hadoop 2.6.0. The accelerator compila-
tion and runtime are provided by the vendor toolkits. For
the AlphaData FPGA cards, we use the OpenCL flow pro-
vided by the Xilinx SDAccel tool-chain, where the OpenCL
kernels will be synthesized into bitstreams to program the
FPGA.

We choose a set of four representative compute-intensive
large-scale applications. They cover two extremes: iterative
machine learning algorithms like logistic regression and K-
means clustering, and streaming algorithms like genome
sequencing analysis and Apache Parquet compression.
1. Logistic regression (LR). The baseline LR is the training

application implemented by Spark MLlib [11] with the
LBFGS algorithm. The software baseline uses netlib with
native BLAS library. The computation kernels we select
are the logistic gradients and the loss function calculation.

4We are planning to install more FPGA cards in the near future.

The kernel computation takes about 80% of the total
application time.

2. K-Means clustering (KM). The KM application is also
implemented using Spark MLlib, which uses netlib with
native BLAS library. The computation kernel we select is
the local sum of center distances calculation. The datasets
used in KM are the same as LR, and the percentage of
kernel computation time is also similar to LR.

3. Genome sequences alignment (GSA). The GSA appli-
cation is from the open-source Cloud Scale BWAMEM
(CS-BWAMEM) software suite [17], which is a scale-out
implementation of the BWAMEM algorithm [29] widely
used in the bioinformatics area. The algorithm aligns the
short reads from the sequencer to a reference genome.
We mainly focus on the alignment step in this application
which uses the Smith-Waterman algorithm, as we did in
a prior case study [15].

4. Apache Parquet compression (COMP). Apache Par-
quet [2] is a compressed and efficient columnar data
representation available to any project in the Hadoop/S-
park ecosystem. Such columnar data generally have good
compression rates and thus are often compressed for bet-
ter spatial utilization and less data communication. We
mainly focus on the compression (deflater) step, which is
computation-bound and common through various appli-
cations. We use two software baselines: 1) the Java Gzip
implementation that uses both the LZ77 algorithm and
Huffman encoding, which has a better compression ratio
but low throughput; and 2) the open-source Snappy im-
plementation [10] that uses a JNI wrapper to call the C++
Snappy library based on the LZ77 algorithm, which has a
lower compression ratio but better throughput.
The input data for LR and KM are based on a variant of

the MNIST dataset [8] with 8 million records, and is sampled
such that on average each node will process 2-4GB of data.
The data set of GSA is a sample of HCC1954, which is a
single person’s whole genome. The input data for COMP is
the first 100 kilo short reads in HCC1954.

The FPGA accelerators for all applications are designed
in-house. The accelerator specifications for LR and KM can
be found in [18], and the Smith-Waterman implementation
is based on [16]. Our FPGA accelerator is designed based
on the Gzip implementation with both the LZ77 algorithm
and Huffman encoding. Table 1 presents an overview of
the accelerator speedup compared to the 12-thread CPU
software baseline in terms of throughput improvement. We
set --num-executors to 1 and --executor-cores

Table 1: FPGA accelerator performance profile
Application Kernel Speedup

LR Gradients 3.4×
KM DistancesSum 4.3×
GSA SmithWaterman 10×

COMP Deflater 26.7× over Gzip
3× over Snappy

to 12 in Spark. For COMP, 12 independent streams on the
CPU are used to take advantage of all cores. The accelerator
design details are omitted in this paper, since our focus is on
evaluating the integration benefits of FPGA accelerators into
big data applications using Blaze.

Currently, we only run the kernel computation on FPGAs
for FPGA-related experiments as a proof-of-concept. We
will consider efficient CPU-FPGA co-working in our future
work, which will provide higher performance than our cur-
rent reported results.

Table 2: Comparison of accelerator deployment efforts in
terms of lines-of-code (LOC) changes

App ACC Setup Partial FaaS?

Manual

LR 26 104 325
KM 37 107 364
GSA 0† 227 896

COMP 0† 70 360
App ACC Setup FaaS

Blaze

LR 9 99 0
KM 7 103 0
GSA 0† 142 0

COMP 0† 65 0
? Partial FaaS does not support accelerator sharing among

different applications, compared to full FaaS.
† In both GSA and COMP, the accelerator kernels are

wrapped as a function replacing the original software
version, so no software code change is counted.

6.2 Programming Efforts
We begin the analysis by showing Blaze’s benefits in reduc-
ing the deployment efforts of integrating existing FPGA ac-
celerators to big data applications. The results are shown
in Table 2, where the lines of code (LOC) breakdown is
listed for the selected applications. The hardware code to
design the accelerators is exactly the same between man-
ual and Blaze implementations and decoupled from soft-
ware developers, so it is excluded in this comparison. As
an illustration of complexity of accelerator designs, it usu-
ally takes an experienced hardware engineer around 4 to
24 weeks to implement an efficient FPGA accelerator ker-
nel, which is a big overhead for big data application devel-
opers like Spark programmers. In this paper the LR, KM,
GSA, and COMP accelerators take a senior graduate stu-
dent 4, 4, 24, and 16 weeks to implement and optimize. Col-
umn ‘App’ in Table 2 shows code changes needed to mod-
ify the big data applications so as to access accelerators in
the application code. Column ‘ACC-setup’ shows the code
changes for PCIe data transfer and accelerator invocation
through OpenCL. Finally, column ‘Partial FaaS’ shows the
code changes needed to enable sharing accelerators among
multiple threads within the application.

Although using LOC to represent the programming ef-
forts is not entirely accurate, it provides a rough illustra-
tion of the difference between each implementation method.

3.03 2.93

1.73 1.71

2.65 2.56

1.51 1.50

0.00

1.00

2.00

3.00

4.00

LR KM GSA COMP *

Im
p

ro
v

e
m

e
n

t
O

v
e

r

C
P

U
 B

a
se

li
n

e
 (

x
)

Job latency Energy

* CPU baseline used for COMP is Snappy

Figure 5: Single-node system performance and energy gains
for each individual application.

Among the breakdown of LOCs, most of the “ACC-setup”
code for accelerator control can be reused as long as the ac-
celerator is fixed. We can see that deploying FPGA acceler-
ators in big data applications using Blaze is very easy, with
less than 10 LOC changes in the application, and a one-time
100 LOC changes for accelerator setup. Without Blaze, even
a manual design for partial FaaS to support accelerator shar-
ing among multi-threads within a single application requires
325 to 896 LOC changes for every application.

6.3 Overall System Performance and
Energy Gains for Single Application

Figure 5 demonstrates the single-node system speedup5 and
energy reduction for our application case studies using Blaze
and FPGA accelerators. For each individual job, we mea-
sure the overall job time and estimate the overall energy con-
sumption based on the average power measured during ap-
plication runtime. As mentioned earlier, we only run the ker-
nel computation on FPGAs. Compared with the CPU base-
line, the system with FPGA achieved 1.7× to 3× speedup on
overall system throughput, and 1.5× to 2.7× improvement
on system energy consumption. (Note that FPGAs introduce
an additional 25 watts per node into the system; therefore the
achieved energy efficiency is slightly smaller than the perfor-
mance speedup numbers.) This confirms that computation-
intensive big data applications can take full advantage of
FPGA acceleration with Blaze.

Moreover, we compare the performance of a 4-node clus-
ter with FPGAs to the CPU-only clusters with 4-node, 8-
node, and 12-node. As shown in Figure 6, for LR and KM, a
4-node cluster with FPGA accelerators enabled can provide
roughly the same throughput as a cluster of 12 CPU nodes.
This indicates that we can reduce the conventional datacen-
ter size by 3× by putting an FPGA into each server node,
while achieving the same throughput.

Finally, Figure 7 presents the execution time breakdown
of Spark jobs (the entire application instead of the kernel
task execution time) on a 4-node cluster before and after
FPGA acceleration. The results confirm that machine learn-
ing workloads such as LR and KM are computationally in-

5For Figure 5, 6, and 7, the experiments are done by configuring
--executor-cores to 12 and --num-executors to the number of
nodes in Spark.

0

50

100

150

200

4Nx12T
CPU

8Nx12T
CPU

12Nx12T
CPU

4Nx12T
FPGA

Ti
m

e
(s

ec
)

Task time App time

(a) LR

0

30

60

90

120

150

4Nx12T
CPU

8Nx12T
CPU

12Nx12T
CPU

4Nx12T
FPGA

Ti
m

e
(s

ec
)

Task time App time

(b) KM

Figure 6: Performance of LR and KM on multiple nodes.
The X-axis represents the experiment configurations. For
example, ”4N×12T CPU” represents the configuration of 4
CPU-only nodes with 12 threads on each node.

0

50

100

150

200

4Nx12T
CPU

4Nx12T
FPGA

Tim
e	
(s
ec
)

0

30

60

90

120

150

4Nx12T
CPU

4Nx12T
FPGA

Tim
e	
(s
ec
)

shuffle

compute

scheduler

data	load	and	
preprocessing

Figure 7: Execution time breakdown for LR and KM before
and after FPGA acceleration on multiple nodes.

.

tensive, and the computation kernels benefit from FPGA ac-
celeration. Note that the data load and preprocessing part in
the original Spark program remain on the CPU, i.e., it is not
accelerated by FPGA.

6.4 FaaS Overhead Analysis
To evaluate the potential overhead that Blaze introduces to
provide FaaS, we evaluate the performance of Blaze inte-
gration against a reference manual integration. To make the
analysis simple, we focus on the streaming COMP applica-
tion. We first measure the normalized compression through-
put to the reference manual design for 1-core and 12-core
cases. As shown in Figure 8(a), for the two software base-
lines, the native Snappy implementation is around 10× faster
than the Java Gzip implementation. For the single-core ver-
sion, a manual integration of the compression FPGA accel-
erator achieves around 8.5× speedup over Snappy, while
a Blaze integration achieves around 5.6× speedup. When
there are 12 cores, the fully parallelized software implemen-
tation gets significant speedup, while Blaze integration and
manual integration achieve similar performance, which is
1.7× better than Snappy.

5

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 thread 12 thread

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

to

M
a

n
u

a
l

D
e

si
g

n

SW-GZIP SW-Snappy

FPGA-Manual FPGA-Blaze

(a)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1 thread 12 threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

to
 M

an
ua

l D
es

ig
n

Software

Manual

Blaze

0	

50	

100	

150	

200	

ZIP - Manual ZIP - Blaze

Ex
ec

ut
io

n
Ti

m
e

Br
ea

kd
ow

n
(m

s)
 FPGA kernel

Transfer

Serialization

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

Manual Blaze

Ex
ec

ut
io

n
Ti

m
e

(m
s)

JVM-to-native

Native-to-FPGA

FPGA-kernel

Native-private-
to-share

(b)
Figure 8: Faas overhead analysis in COMP application.

0
.2

4

0
.2

4

0
.2

4

0
.1

7

0
.1

7

0
.1

7

0
.1

4

0
.1

4

0
.3

3

0
.3

3

6
.7

1

2
.4

2

0
.3

1

6
.9

5

1
.8

0

0
.2

3 0
.3

6

0
.3

2

0
.9

1

0
.5

8

0.00

1.00
N

a
ïv

e

w
/

P
ip

e
lin

e

w
/

ca
ch

in
g

N
a

ïv
e

w
/

P
ip

e
lin

e

w
/

ca
ch

in
g

N
a

ïv
e

w
/

P
ip

e
lin

e

N
a

ïv
e

w
/

P
ip

e
lin

e

LR KM GSA COMP

N
o

rm
a

li
ze

d
 F

P
G

A
 T

a
sk

 T
im

e

to
 C

P
U

 B
a

se
li

n
e

FPGA kernel time Task time

Figure 9: Breakdown of the JVM-to-FPGA communication
optimizations in FaaS.

Then we analyze why Blaze integration has more over-
head than manual integration in the single-core case. We
break down the execution time into FPGA kernel execu-
tion, JVM-to-native and native-to-FPGA data movement,
and private-to-shared memory movement in Blaze native.
The detailed breakdown is illustrated in Figure 8(b). As
we can see, Blaze introduces the overhead of moving data
from application private memory to the Blaze shared mem-
ory, which is required to manage accelerator sharing by
multiple applications and costs around 50% more execu-
tion time. Figure 8(b) also confirms that the overwhelming
JVM-to-FPGA communication overhead occupies 76% of
the total execution time in the single-core COMP applica-
tion. Due to the multi-thread nature in big data applications,
such overhead can be alleviated using task pipelining (and
data caching) that is transparently supported by our FaaS
framework in Blaze. As a result, we see a comparable per-
formance between Blaze integration and manual integration
when there are 12 cores.

6.5 Breakdown of FaaS Optimizations
We show the breakdown of performance improvements by
each JVM-to-FPGA communication optimization in Fig-
ure 9. We start from a naive FaaS without task pipelining
or data caching, and then gradually add task pipelining and
data caching. For each FaaS setup, we evaluate the FPGA
kernel time and the task time. The task time represents the
targeted accelerating kernel instead of the entire application,
which includes both the time of data transfer to and from
FPGA via PCIe and FPGA kernel time. FPGA kernel time
stays the same across different cases since the total compu-
tation that needs to be performed on the FPGA remains the
same.

As shown in Figure 9, a naive offloading of workload to
accelerator may result in a slow-down rather than a speedup,
e.g., 6.71× slowdown for LR and 6.95× slowdown for KM,
due to the aforementioned JVM-to-FPGA overhead. By en-
abling data pipelining, the total time can be accelerated by a
factor of 2.8× to 3.8×. For iterative computation of LR and
KM, data caching provides a huge performance improve-
ment since most of the data transfer is mitigated. Since all
the data in GSA and COMP is processed only once, the re-

w/o caching
w/o pipeline

w/o caching
w pipeline

w caching
w pipeline

Figure 10: Accelerator utilization results of running a single
LR application on an FPGA.

sults with and without data caching are identical, and thus
omitted in Figure 9.

The benefits of task pipelining and data caching can be
better illustrated using the accelerator utilization metric. In
Figure 10 we show the different utilization patterns of run-
ning a single application LR on an FPGA. The accelerator
utilization is defined as the ratio of accelerator execution
time in a sampled interval of application execution time. The
accelerator utilization is consistently low in the case without
caching or pipelining shown in the first part of the figure,
since the accelerator keeps waiting for data to be transferred
from the application. In the second part, when pipelining is
enabled, the accelerator can reach high utilization periodi-
cally. This is because at the beginning of each iteration the
first batch of data needs to be transferred before the accel-
erator can start, but once the pipeline begins, the accelerator
can be kept busy with data continuously flowing in. Once
data caching is enabled, the accelerator utilization can be in-
creased dramatically. Similar results can also be observed
for KM workloads as well. The high accelerator utilization
in full-featured FaaS for KM and LR applications confirms
again that the Blaze runtime overhead is negligible.

6.6 Multi-Job Scheduling Analysis
To evaluate the effectiveness of GAM’s resource allocation
policy (i.e., accelerator-centric scheduling), we choose seven
sets of workloads on a 4-node CPU-FPGA cluster. Each set
contains LR and KM applications of various input data sizes,
and the ratio of these two applications varies among different
sets of workloads.

We compare GAM with two baselines: static-partition
and naive sharing. In static partition, we evenly partition the
4 nodes into two sets: 2 nodes only run LR applications and
the other 2 nodes only run KM applications. Therefore, re-
programming never occurs in the experiments. In naive shar-
ing, all the FPGA nodes can run both LR and KM workloads,
and we use the Apache YARN’s default resource allocation
policy. Our GAM has settings similar to naive sharing, but

0
.5

2
 0

.7
1

0
.9

6

0
.9

2

0
.9

2

0
.6

1

0
.5

2

1
.0

0

0
.8

3

0
.6

7

0
.5

4
 0

.7
2

0
.7

4

1
.0

0

1
.0

0

0
.9

6

0
.8

6

0
.8

1

0
.9

0

0
.8

6

0
.9

8

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1 0.8 0.6 0.5 0.4 0.2 0

N
o

rm
a

li
ze

d
 S

y
st

e
m

 T
h

ro
u

g
h

p
u

t

to
 T

h
e

o
re

ti
c
a

l
O

p
ti

m
a

l
T

h
ro

u
g

h
p

u
t

Ratio of LR workloads in the mixed LR-KM workloads

static partition naïve sharing GAM theoretical optimal

(a) System throughput of different workloads. The number is normalized to
the offline theoretical optimal results.

1
3

.3

3
1

.3

4
3

.6

4
5

.7

3
8

.4

3
1

.4

2
3

.4

4
5

.5

2
5

.5

1
7

.7

1
8

.9

1
9

.9

2
4

.6

5
0

.7

4
6

.3

4
2

.7

3
2

.6

3
1

.9

3
6

3
4

.2

4
9

.3

4
6

.3

4
4

.3

4
5

.5

4
5

.7
 5
2

.3

5
1

.6

5
0

.7

1 0.8 0.6 0.5 0.4 0.2 0

A
c
c
e

le
ra

to
r

U
ti

li
za

ti
o

n
 (

%
)

Ratio of LR workloads in the mixed LR-KM workloads

static partition naïve sharing GAM theoretical optimal

(b) Accelerator utilization of different workloads.

Figure 11: Normalized system throughput and accelerator
utilization of mixed workloads on a CPU-FPGA cluster.

uses our accelerator-centric scheduling policy. We also cal-
culate the offline theoretical optimal scheduling results, in
which case we assume that all the sets of workloads submit-
ted are known beforehand.

Figure 11 plots the normalized system throughput to the-
oretical optimal and accelerator utilization. Comparing the
baseline static partition with naive sharing, we find that
static partition performs better when the cluster is partitioned
in a way that the ratio of KM nodes to LR nodes is close to
the ratio of KM workloads to LR workloads (i.e., ratio is
0.5), while naive sharing performs better when the work-
loads only contain LR or KM applications (i.e., ratio is 1 or
0), since the applications can use all 4 FPGA nodes. How-
ever the advantages of naive sharing decline as the work-
loads become more heterogeneous due to FPGA reprogram-
ming overhead.

GAM incorporates the best aspects of static partition and
naive sharing: it potentially allows applications to use all
cluster FPGAs (shown as the accelerator utilization rate in
Figure 11 (b)). Meanwhile, it reduces FPGA reprogramming
overhead by placing similar workloads on the same set of
nodes. On average, static partition and naive sharing are
27% and 22% away from the theoretical optimal results,
while GAM is only 9% away from the optimal results.

7. Related Work
There are several projects on the inclusion of heterogeneous
architectures in big-data analytic frameworks. In this section
we first discuss the projects that manage large-scale clusters

and their support for accelerators. Then we review existing
runtime systems that were designed and implemented for
CPU-GPU datacenters. As we mentioned in Section 1, the
approaches for GPUs are almost not applicable to FPGAs.
Finally, we consider existing systems especially designed for
FPGAs.

Cloud-scale resource management. Resource managers
have a long history, and are widely used in managing
datacenter-scale clusters of machines. Examples include vir-
tual machine provisioning software, systems that provision
long-running services, and scientific cluster management for
workloads such as MPI and HTCondor [5]. The most funda-
mental difference between these systems and resource man-
agers such as Hadoop YARN, is that YARN specifically tar-
gets data processing jobs, which elastically request leases on
transient resources, returning those resources when the job
completes.6 Such jobs must be written with the assumption
that resources can be preempted or fail, and save partial state
as required to avoid recomputation. Resource managers that
are similar to YARN include Mesos [24], Omega [37] and
Corona [4]. However, none of these yet provide support for
FPGA accelerator management.

Distributed runtime systems for GPUs. There are sev-
eral works on managing GPUs at cluster scale. Yahoo
[7] demonstrates running deep learning jobs onto a clus-
ter of GPU nodes managed by YARN. Their system lever-
ages YARN’s node label capabilities to allow jobs to state
whether they should be launched on CPU or GPU nodes.
Dandelion [35] uses Moxie, a cluster dataflow engine, to
schedule jobs represented in a dataflow graph onto a cluster
of powerful machines with GPUs. The high-level architec-
ture of Moxie is similar to Dryad [26] and YARN. Although
these GPU management techniques can be used to manage
FPGA systems, they cannot achieve the same efficiency as
our Blaze because they lack consideration of FPGA repro-
gramming overhead.

There are also some projects that attempt to include GPUs
into single-application runtime systems. Caffe [27] is a C-
based distributed system for convolutional architecture ac-
celeration on GPU. HeteroSpark [30] is a CPU-GPU Spark
framework. Both of them adopt fixed functions, so users
have to use provided accelerators to describe their appli-
cations. On the other hand, since the compilation time for
GPU is negligible, more recent works attempt to provide
a fully programmable framework which is able to gener-
ate and compile GPU kernel code on the fly. For example,
MapCG [25], GPMR [40], and Glasswing [20] allow users
to write their own map/reduce functions, but the program-
ming models they provided still leverage low-level hard-
ware architecture-aware APIs such as thread ID. In addition,
HeteroDoop [36], HadoopCL [22], and SWAT [23] propose
a user-friendly programming model for Hadoop and Spark
users to write map/reduce functions without considering the

6This is the intended use case for YARN. However, not all big data
systems follow this design principle.

underlying architecture, but sacrifice some performance im-
provement opportunities.

Distributed runtime systems for FPGAs. There are
some research projects that try to accelerate big-data analytic
frameworks using FPGAs. FPMR [39] attempts to imple-
ment an entire MapReduce framework on FPGAs so that the
data communication overhead can be eliminated. However
FPMR still requires users to write customized map/reduce
functions in RTL, and it only supports very limited MapRe-
duce features. Axel [41] and [44] are C-based MapReduce
frameworks for not only FPGAs but also GPUs. Both frame-
works have straightforward scheduling mechanisms to allo-
cate tasks to either FPGAs or GPUs. Melia [43] presents a
C++ based MapReduce framework on OpenCL-based Altera
FPGAs. It generates Altera FPGA accelerators from user-
written C/C++ map/reduce functions and executes them on
FPGAs along with CPUs. Although experimental results in
[43] evaluate the quality of generated accelerators, the re-
sults for multi-node clusters only come from simulations in-
stead of end-to-end evaluations. Since all of the above sys-
tems are implemented in C/C++ as standalone frameworks,
they are not compatible with widely used JVM-based big
data analytic systems such as Hadoop and Spark.

On the other hand, to bridge the gap between JVM-based
frameworks and C-based FPGA accelerators, [45] deploys
Hadoop on a server with NetFPGAs connected via an Eth-
ernet switch. However, the programming model in [45] ex-
poses low-level interactions with the FPGA device to users.
In addition, no results are provided to show whether this sys-
tem has reasonable scalability when extending to a cluster of
multiple servers. Different from [45], the Zynq-based clus-
ter [31] deploys Hadoop on a cluster of Xilinx Zynq SoC
devices [34] where CPU cores and programmable logics are
fabricated on the same chip. Although the system is energy
efficient because of FPGAs, this methodology is tightly cou-
pled with the underlying Zynq platform and is hard to port to
clusters with commodity CPU servers. One of the first stud-
ies that integrates PCIe-based high-performance FPGA ac-
celerators into Spark running on commodity clusters is our
case study for genome sequence alignment in [15]. Com-
pared to [15], Blaze provides generic programming and run-
time support to deploy any FPGA accelerators, and manages
accelerator sharing by multiple applications.

FPGA virtualization has been discussed in [14], where
multiple FPGA accelerators that are designed with certain
coding templates can be placed on the same FPGA board and
managed through OpenStack. Compared to our work, this
mechanism imposes a limited programming model for accel-
erator designs due to the use of coding templates. Moreover
dividing the FPGA resources into several regions results in
less logics being available to accelerators, and it thus limits
the performance of accelerators.

SparkCL [38] works in a direction that is orthogonal
to our Blaze system described in this paper. While Blaze
assumes predefined FPGA accelerators, SparkCL adapts

Aparapi [3] to automatically generate an OpenCL kernel for
Altera FPGAs and executes FPGA accelerators on Spark.
However, the programming model of SparkCL discloses
low-level OpenCL APIs such as thread ID to users and only
supports primitive data types. In addition, it lacks experi-
mental results to illustrate system efficiency and scalability.
We have another ongoing effort at UCLA to improve auto-
matic Java-to-FPGA code generation, which is orthogonal to
Blaze and will be integrated into Blaze in future work.

In summary, to the best of our knowledge, Blaze is the
first (open source) system that provides easy and efficient
access of FPGA accelerators for big data applications that
run on top of Apache Spark and Hadoop YARN.

8. Conclusion

In this paper we present the design and implementation of
Blaze, which provides programming and runtime support
that enables rapid and efficient deployment of FPGA accel-
erators at warehouse-scale. Blaze abstracts FPGA acceler-
ators as a service (FaaS), decouples the FPGA accelerator
development and big data application development, and pro-
vides a set of clean programming APIs for big data applica-
tions to easily access the performance and energy gains of
FPGA accelerators. In the FaaS framework, we provide effi-
cient accelerator sharing by multiple heterogeneous threads,
hide the overwhelming Java-to-FPGA data communication
overhead, and support fault tolerance. We implement FaaS
as a third-party package that works with Apache Spark. In
addition, we propose to manage the logical accelerator func-
tionality as a resource instead of the physical hardware plat-
form itself. Using this new concept, we are able to extend
Hadoop YARN with an accelerator-centric scheduling pol-
icy that better manages global accelerator resources and mit-
igates the FPGA reprogramming overhead. Our experiments
with four representative big data applications demonstrate
that Blaze greatly reduces the programming efforts, and im-
proves the system throughput from 1.7× to 3×, i.e., a 1.7×
to 3× datacenter size reduction using FPGAs with the same
throughput. We also demonstrate that our FaaS implementa-
tion achieves performance similar to a manual design under
the dominant multi-thread scenarios in big data applications,
while our accelerator-centric scheduling achieves close to
optimal system throughput.

9. Acknowledgement

This work is partially supported by the Center for Domain-
Specific Computing under the NSF InTrans Award CCF-
1436827, funding from CDSC industrial partners includ-
ing Baidu, Fujitsu Labs, Google, Huawei, Intel, IBM Re-
search Almaden, and Mentor Graphics; C-FAR, one of the
six centers of STARnet, a Semiconductor Research Corpo-
ration program sponsored by MARCO and DARPA; grants
NSF IIS-1302698 and CNS-1351047; and U54EB020404
awarded by NIH Big Data to Knowledge (BD2K).

References
[1] Apache Hadoop. https://hadoop.apache.org. Ac-

cessed: 2016-05-24.

[2] Apache parquet. https://parquet.apache.org/.
Accessed: 2016-05-24.

[3] Aparapi in amd developer website. http://
developer.amd.com/tools-and-sdks/opencl-
zone/aparapi/. Accessed: 2016-05-24.

[4] Facebook engineering (2012) under the hood: Schedul-
ing mapreduce jobs more efficiently with corona.
https://www.facebook.com/notes/facebook-
engineering/under-the-hood-scheduling-
mapreduce-jobs-more-efficiently-with-
corona/10151142560538920. Accessed: 2016-01-30.

[5] HTCondor. https://research.cs.wisc.edu/
htcondor. Accessed: 2016-05-24.

[6] Intel to Start Shipping Xeons With FPGAs in Early
2016. http://www.eweek.com/servers/intel-
to-start-shipping-xeons-with-fpgas-in-
early-2016.html. Accessed: 2016-05-17.

[7] Large scale distributed deep learning on Hadoop clus-
ters. http://yahoohadoop.tumblr.com/post/
129872361846/large-scale-distributed-
deep-learning-on-hadoop. Accessed: 2016-05-24.

[8] The MNIST database of handwritten digits. https:
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/multiclass.html#mnist8m. Accessed:
2016-05-24.

[9] Project Tungsten: Bringing Apache Spark Closer to Bare
Metal. https://databricks.com/blog/2015/
04/28/project-tungsten-bringing-spark-
closer-to-bare-metal.html. Accessed: 2016-08-
10.

[10] The snappy-java port. https://github.com/xerial/
snappy-java. Accessed: 2016-08-01.

[11] Spark MLlib. http://spark.apache.org/mllib/.
Accessed: 2016-05-24.

[12] Xeon+FPGA Platform for the Data Center. https:
//www.ece.cmu.edu/˜calcm/carl/lib/exe/
fetch.php?media=carl15-gupta.pdf. Accessed:
2016-05-17.

[13] BRECH, B., RUBIO, J., AND HOLLINGER, M. IBM Data
Engine for NoSQL - Power Systems Edition. Tech. rep., IBM
Systems Group, 2015.

[14] BYMA, S., STEFFAN, J. G., BANNAZADEH, H., GARCIA,
A. L., AND CHOW, P. FPGAs in the cloud: Booting vir-
tualized hardware accelerators with openstack. In Field-
Programmable Custom Computing Machines (FCCM), 2014
IEEE 22nd Annual International Symposium on (2014), IEEE,
pp. 109–116.

[15] CHEN, Y.-T., CONG, J., FANG, Z., LEI, J., AND WEI., P.
When Apache Spark meets FPGAs: A case study for next-
generation dna sequencing acceleration. In The 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16)
(2016).

[16] CHEN, Y. T., CONG, J., LEI, J., AND WEI, P. A novel high-
throughput acceleration engine for read alignment. In Field-
Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annual International Symposium on (May 2015),
pp. 199–202.

[17] CHEN, Y.-T., CONG, J., LI, S., PETO, M., SPELLMAN, P.,
WEI, P., AND ZHOU, P. CS-BWAMEM: A fast and scalable
read aligner at the cloud scale for whole genome sequencing.
High Throughput Sequencing Algorithms and Applications
(HITSEQ) (2015).

[18] CONG, J., HUANG, M., WU, D., AND YU, C. H. Heteroge-
neous datacenters: Options and opportunities. In Proceedings
of the 53nd Annual Design Automation Conference (2016),
ACM.

[19] CONG, J., LIU, B., NEUENDORFFER, S., NOGUERA, J.,
VISSERS, K., AND ZHANG, Z. High-level synthesis for
FPGAs: From prototyping to deployment. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions
on 30, 4 (April 2011), 473–491.

[20] EL-HELW, I., HOFMAN, R., AND BAL, H. E. Glasswing:
Accelerating mapreduce on multi-core and many-core clus-
ters. In Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing (New
York, NY, USA, 2014), HPDC ’14, ACM, pp. 295–298.

[21] ESMAEILZADEH, H., BLEM, E., ST.AMANT, R., SANKAR-
ALINGAM, K., AND BURGER, D. Dark silicon and the
end of multicore scaling. In Computer Architecture (ISCA),
2011 38th Annual International Symposium on (June 2011),
pp. 365–376.

[22] GROSSMAN, M., BRETERNITZ, M., AND SARKAR, V.
HadoopCL: Mapreduce on distributed heterogeneous plat-
forms through seamless integration of Hadoop and OpenCL.
In Proceedings of the 2013 IEEE 27th International Sympo-
sium on Parallel and Distributed Processing Workshops and
PhD Forum (Washington, DC, USA, 2013), IPDPSW ’13,
IEEE Computer Society, pp. 1918–1927.

[23] GROSSMAN, M., AND SARKAR, V. Swat: A pro-
grammable, in-memory, distributed, high-performance com-
puting platform. The 25th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC)
(2016).

[24] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI,
A., JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA,
I. Mesos: A platform for fine-grained resource sharing in the
data center. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation (Berkeley,
CA, USA, 2011), NSDI’11, USENIX Association, pp. 295–
308.

[25] HONG, C., CHEN, D., CHEN, W., ZHENG, W., AND LIN, H.
MapCG: Writing parallel program portable between CPU and
GPU. In Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques (New
York, NY, USA, 2010), PACT ’10, ACM, pp. 217–226.

[26] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: distributed data-parallel programs from se-
quential building blocks. In ACM SIGOPS Operating Systems
Review (2007), vol. 41, ACM, pp. 59–72.

[27] JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S.,
LONG, J., GIRSHICK, R., GUADARRAMA, S., AND DAR-
RELL, T. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093 (2014).

[28] K. CHOI, Y., AND CONG, J. Acceleration of EM-based
3D CT reconstruction using FPGA. IEEE Transactions on
Biomedical Circuits and Systems 10, 3 (June 2016), 754–767.

[29] LI, H. Aligning sequence reads, clone sequences and assem-
bly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997
(2013).

[30] LI, P., LUO, Y., ZHANG, N., AND CAO, Y. HeteroSpark: A
heterogeneous CPU/GPU spark platform for machine learning
algorithms. In Networking, Architecture and Storage (NAS),
2015 IEEE International Conference on (Aug 2015), pp. 347–
348.

[31] LIN, Z., AND CHOW, P. Zcluster: A Zynq-based Hadoop
cluster. In Field-Programmable Technology (FPT), 2013 In-
ternational Conference on (Dec 2013), pp. 450–453.

[32] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER,
S., AND CHUN, B.-G. Making sense of performance in
data analytics frameworks. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15)
(Oakland, CA, May 2015), USENIX Association, pp. 293–
307.

[33] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S., CHIOU,
D., CONSTANTINIDES, K., DEMME, J., ESMAEILZADEH,
H., FOWERS, J., GOPAL, G. P., GRAY, J., HASELMAN,
M., HAUCK, S., HEIL, S., HORMATI, A., KIM, J.-Y.,
LANKA, S., LARUS, J., PETERSON, E., POPE, S., SMITH,
A., THONG, J., XIAO, P. Y., AND BURGER, D. A reconfig-
urable fabric for accelerating large-scale datacenter services.
In Computer Architecture (ISCA), 2014 ACM/IEEE 41st In-
ternational Symposium on (June 2014), ieeexplore.ieee.org,
pp. 13–24.

[34] RAJAGOPALAN, V., BOPPANA, V., DUTTA, S., TAYLOR,
B., AND WITTIG, R. Xilinx Zynq-7000 EPP–an extensible
processing platform family. In 23rd Hot Chips Symposium
(2011), pp. 1352–1357.

[35] ROSSBACH, C. J., YU, Y., CURREY, J., MARTIN, J.-P.,
AND FETTERLY, D. Dandelion: a compiler and runtime for
heterogeneous systems. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (2013),
ACM, pp. 49–68.

[36] SABNE, A., SAKDHNAGOOL, P., AND EIGENMANN, R. Het-
eroDoop: A MapReduce programming system for accelera-
tor clusters. In Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Comput-
ing (New York, NY, USA, 2015), HPDC ’15, ACM, pp. 235–
246.

[37] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK,
M., AND WILKES, J. Omega: flexible, scalable schedulers
for large compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems (2013), ACM,
pp. 351–364.

[38] SEGAL, O., COLANGELO, P., NASIRI, N., QIAN, Z., AND
MARGALA, M. SparkCL: A unified programming frame-

work for accelerators on heterogeneous clusters. CoRR
abs/1505.01120 (2015).

[39] SHAN, Y., WANG, B., YAN, J., WANG, Y., XU, N., AND
YANG, H. FPMR: Mapreduce framework on FPGA. In
Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (New York,
NY, USA, 2010), FPGA ’10, ACM, pp. 93–102.

[40] STUART, J. A., AND OWENS, J. D. Multi-GPU mapreduce
on GPU clusters. In Proceedings of the 2011 IEEE Interna-
tional Parallel & Distributed Processing Symposium (Wash-
ington, DC, USA, 2011), IPDPS ’11, IEEE Computer Society,
pp. 1068–1079.

[41] TSOI, K. H., AND LUK, W. Axel: A heterogeneous clus-
ter with FPGAs and GPUs. In Proceedings of the 18th An-
nual ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (New York, NY, USA, 2010), FPGA
’10, ACM, pp. 115–124.

[42] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C.,
AGARWAL, S., KONAR, M., EVANS, R., GRAVES, T.,
LOWE, J., SHAH, H., SETH, S., ET AL. Apache Hadoop
YARN: Yet another resource negotiator. In Proceedings of the
4th annual Symposium on Cloud Computing (2013), ACM,
p. 5.

[43] WANG, Z., ZHANG, S., HE, B., AND ZHANG, W. Melia:
A MapReduce framework on OpenCL-based FPGAs. IEEE
Transactions on Parallel and Distributed Systems PP, 99
(2016), 1–1.

[44] YEUNG, J. H. C., TSANG, C. C., TSOI, K. H., KWAN, B.
S. H., CHEUNG, C. C. C., CHAN, A. P. C., AND LEONG, P.
H. W. Map-reduce as a programming model for custom com-
puting machines. In Field-Programmable Custom Computing
Machines, 2008. FCCM ’08. 16th International Symposium
on (April 2008), pp. 149–159.

[45] YIN, D., LI, G., AND HUANG, K.-D. Scalable MapReduce
framework on FPGA. In Lecture Notes in Computer Science,
S. Andreev, S. Balandin, and Y. Koucheryavy, Eds. Springer
Berlin Heidelberg, 2012, pp. 280–294.

[46] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA,
J., MCCAULEY, M., FRANKLIN, M. J., SHENKER, S., AND
STOICA, I. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design
and Implementation (2012), USENIX Association, pp. 2–2.

[47] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Spark: Cluster computing
with working sets. In Proceedings of the 2nd USENIX confer-
ence on Hot topics in cloud computing (2010), pp. 10–10.

[48] ZHANG, C., LI, P., SUN, G., GUAN, Y., XIAO, B., AND
CONG, J. Optimizing FPGA-based accelerator design for
deep convolutional neural networks. In Proceedings of
the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (New York, NY, USA, 2015),
FPGA ’15, ACM, pp. 161–170.

