
AutoNTT: Automatic Architecture Design and Exploration for
Number Theoretic Transform Acceleration on FPGAs

Dilshan Kumarathunga1, Qilin Hu1,2,*, Zhenman Fang1

1Simon Fraser University, Burnaby, BC, Canada; 2Hunan University, Changsha, Hunan, China
{dilshan kumarathunga, zhenman}@sfu.ca, hql@hnu.edu.cn

*Work done while a visiting PhD student at Simon Fraser University

Abstract—Fully Homomorphic Encryption (FHE), which en-
ables homomorphic computing on encrypted data, has emerged
as a promising privacy-aware computing method. However,
FHE is orders-of-magnitude slower than the same computation
on plain data, making it far from practical use. One of the
major computation bottlenecks in FHE is the Number Theoretic
Transform (NTT). While prior studies have accelerated NTT
using specific architectures and FHE parameters, there still lacks
a design automation tool to systematically design and explore
various NTT architectures to support a diverse range of FHE
parameters, such as various polynomial sizes, modulo sizes, and
reduction methods.

In this paper, we present AutoNTT, an open-source automatic
architecture design and exploration tool to generate highly scal-
able NTT accelerators on FPGAs. Unlike prior studies, AutoNTT
can automatically generate several optimized NTT acceleration
architectures in HLS (i.e., iterative, dataflow, and hybrid archi-
tectures) with multiple common reduction methods, and support
a large range of polynomial sizes (210 − 217) and modulo sizes
(log q : 28 − 64). In our auto-generated NTT architectures,
we have applied many optimizations, such as polynomial and
twiddle factor buffer reduction, and simplifying interconnections
between different butterfly unit groups. Compared to prior
studies, AutoNTT can generate NTT accelerators with 2.48×
better latency and 3.61× better throughput on average, while
maintaining a similar FPGA resource utilization. AutoNTT will
be released soon at https://github.com/SFU-HiAccel/AutoNTT.

I. INTRODUCTION

Along with rapid developments in the fields of machine
learning and quantum computing, the requirement for efficient
and reliable cryptosystems to enable post-quantum privacy-
aware computing has gained utter importance [1]–[3]. Conse-
quently, significant research has focused on developing prac-
tical and efficient deployment methods for FHE [4] and Post-
Quantum Cryptography (PQC) [5] schemes. Data encrypted by
these lattice-based schemes are in the form of polynomials,
and polynomial multiplication is one of the most expensive
operations when computing with encrypted data. To reduce
the polynomial multiplication time complexity from O(N2)
to O(N logN), where N denotes the polynomial size, NTT
has been widely used in both FHE and PQC schemes. As a
key component of FHE, NTT occupies about 54% of the total
computation time in the widely used Microsoft SEAL FHE
library [6], [7], which is critical to accelerate. However, it
presents multiple challenges to accelerate NTT on hardware.

First of all, FHE schemes span across a diverse range of
parameters, including different polynomial sizes ranging from
N = 210−217, different prime modulo sizes (log q = 28−64
bits), and different number of primes (also known as limbs)
when the residue number system is used. These parameters

directly affect the performance, accuracy, and security of the
cryptosystem [8], [9]. Unfortunately, prior NTT and FHE
accelerators [7]–[15] only optimize their FPGA designs for
a limited set of (sometimes relatively small) FHE parameters.
It is nontrivial to adapt their designs to support the diverse
FHE parameters (especially scaling to larger designs) while
providing optimal performance, not to mention that most of
those studies did not open source their designs.

(a) Iterative

Stage s

(c) Hybrid

Interconnection between stages Butterfly Unit Data Flow

X+TF·YX

Y X-TF·Y

TF

Stage s+1Stage s

In
ter

con
n

ection

BU

BU

BU

BU %

%%

+

-×

In
tercon

n
ection

BU

BU

BU

Stage 0

BU

BU

Stage 1

BU

(b) Dataflow

Stage 3

BU

Stage 2

BU

Fig. 1: Different NTT architectures with their butterfly unit
(BU) configurations: (a) Iterative, (b) Dataflow, (c) Hybrid

Given the polynomial-size N , NTT contains logN stages
with varying interconnection patterns. In addition to FHE
parameters, there are various accelerator architectures and
design parameters for NTT acceleration on FPGAs [12], [16]
to support these different stages. Fig. 1 illustrates three NTT
design architectures, including (a) the iterative architecture that
supports only one stage at a time, (b) the dataflow architecture
that supports all the stages in a pipeline, and (c) the hybrid ar-
chitecture that combines the iterative (vertically) and dataflow
(horizontally) architectures. In all of these architectures, the
basic component is the butterfly unit (BU), which takes two
polynomial values (X and Y ) and one twiddle factor (TF )
value as inputs and produces two outputs (X + TF ∗ Y ,
and X − TF ∗ Y ). Note that these operations are modular
multiplication, modular addition, and modular subtraction.

On a datacenter FPGA, scaling up NTT designs to improve
latency and throughput poses significant challenges, including:
1) designing the optimal NTT architecture and configuration
to utilize the maximum available resources, 2) supporting
parallel memory access required by polynomials and TFs
while minimizing on-chip memory utilization, 3) supporting
complex interconnection patterns for both NTT and inverse
NTT operations in the same hardware architecture, and 4)
achieving a good frequency for large FPGA designs. It is es-

https://github.com/SFU-HiAccel/AutoNTT


TABLE I: Comparison with state-of-the-art NTT automation solutions

Automation
Solution Crypt. Scheme

Supported
Architecutre Supported

Reduction Algo Poly Size (N) log(q)
Dependency
on #Limbs

Max
Vector Size DSE Open

SourceI D H
Proteus [17] FHE/PQC/ZKP N Y N WLM 210 − 216 28− 256 N 2 Y Y
OpenNTT [18] FHE Y N N WLM 210 − 216 24− 60 N 64 N Y
Mu et al. [12] PQC Y Y Y Montgomery 27 − 212 13− 24 N/A 64 N N

NTTGen [16] HE Y Y Y
Barrett/
Prime Specific 210 − 214 28− 52 Y 32 Y N

AutoNTT
(Ours) FHE/PQC Y Y Y

Barrett/
Montgomery/WLM/
Custom algorithms

210 − 217 28− 64 N 512 Y Y

I = Iterative, D = Dataflow, H = Hybrid, WLM = Word Level Montgomery, Y = Yes, N = No, N/A = Not Available.

sential to develop an automation tool to automatically generate
highly scalable NTT designs and explore the best design for
the given FHE parameters.

While there are some RTL-based automation solutions [12],
[16]–[18], they suffer from one or more of the following
limitations: 1) only support limited NTT architectures and
reduction methods, 2) only support limited FHE parameters, 3)
do not provide automatic design space exploration, and 4) are
not open source. A detailed comparison is provided in Table I.

In light of this, we present AutoNTT, an open-source au-
tomation framework, which can automatically generate highly
scalable NTT architectures in HLS (high-level synthesis) for a
diverse set of FHE parameters. In summary, AutoNTT features
the following novel contributions:
1. Support for wider ranges of FHE parameters: Compared

to prior studies, AutoNTT supports wider ranges of FHE
parameters, including a large range of polynomial sizes
(N = 210 − 217) and modulo sizes (log q : 28− 64 bits).

2. Support for diverse NTT architectures: AutoNTT sup-
ports highly optimized iterative, dataflow, and hybrid ar-
chitectures, with common reduction methods (Barrett [19],
Montgomery [20], word level Montgomery [21], and user-
customized reductions). Moreover, AutoNTT optimizes
NTT interconnection patterns, as well as polynomial and
twiddle factor buffer usage.

3. Automatic design and exploration: For a user given FHE
parameter set and an FPGA resource budget, AutoNTT au-
tomatically explores the design space, identifies the optimal
architecture and its configuration, and generates the final
FPGA design in HLS.

4. Competitive performance: On average, AutoNTT pro-
vides 2.48× latency improvement and 3.61× better through-
put, compared to state-of-the-art RTL designs, while main-
taining a similar resource budget.

II. BACKGROUND AND MOTIVATION

A. NTT Implementation for FHE

When discrete Fourier transform (DFT) is performed over
a specific finite field of integers modulo a prime q (Zq),
we denote this operation as NTT. Therefore, algorithms for
fast DFT such as Cooley-Tukey [22] and Gentleman-Sande
[23] for input size N can be applied to NTT with the time
complexity of O(N logN). When converted to the NTT do-
main, the multiplication of two polynomials becomes element-

wise multiplication. We refer interested readers to some of the
previous work [7], [9], [16] for more details about NTT.

The ciphertexts of FHE schemes are N -size polynomials
with coefficients in ZQ, where Q ranges from a few hundred
to a few thousand bits [24]. The residue number system (RNS)
breaks these coefficients into smaller sizes, representing Q
as a product of l primes q1, ..., ql, each roughly the size of
a machine word. Each polynomial for a prime qi is called
a limb. NTT can leverage primes in RNS for parallelism,
but in FHE schemes like Cheon-Kim-Kim-Song (CKKS),
each multiplication reduces one limb [14], requiring careful
exploration of limb parallelism.

All the operations performed in NTT are modulo operations.
Even though modulo addition and subtraction can be simpli-
fied with comparisons with the modulus [25], modulo multipli-
cation is expensive and consumes many DSPs. To avoid the
computing overhead of modular multiplication, Barrett [19]
and Montgomery [20] reductions are generally employed to
support a generic q. Taking advantage of NTT-friendly primes,
derived versions of these algorithms are also used in literature
to optimize modulo multiplication [16], [21], [26] in terms of
latency and resources.

B. Motivation for AutoNTT

Table II provides some key parameters of recent datacenter
FPGA-based FHE accelerators. Vector size denotes the num-
ber of polynomial values consumed by the NTT unit each
cycle. These accelerators optimize their designs for specific
FHE parameters. Supporting diverse FHE parameters in such
designs and beyond is challenging as it requires parameter-
specific optimizations to maintain the performance and handle
higher resource utilization required by larger parameters.

TABLE II: Key NTT parameters in recent FHE accelerators

Design Poly Size
(N) log(q)

Vector
Size Architecture Reduction

FAB [14] 216 54 512 Iterative WK
Poseidon [25] 216 32 512 Hybrid B
HEAP [15] 213 36 512 Iterative B

B: Barrett reduction. WK: Will-Ko reduction.

Table III summarizes a qualitative comparison of key at-
tributes of different architectures, and it shows a tradeoff
between scalability and performance using different architec-
tures. However, to fully explore the advantages of this design
space requires scalable architectures to enable a larger design
space and have a systematic way to identify the best solution.



TABLE III: Comparison of different architectures
Attribute I D H
Non power of two BUs ⌢ ⌣ ⌣

Independence of #BUs from poly size (N) ⌣ ⌢ ⌣

Interconnection complexity ⌣ À ⌢

Latency in general ⌣ ⌢ À

Throughput in general À ⌣ À

I = Iterative, D = Dataflow, H = Hybrid

Store POLY

Load POLY

TFBuf0[0]

TFBuf0[1]

Load TF

PolyBuf1 BU1

PolyBuf2 BU2

PolyBuf3 BU3

TFBuf1[0]

TFBuf1[1]

BU0PolyBuf0

TF loading

Poly loading

Poly storing

TF stream

Poly stream

Buf0

Buf1

Buf2
From Load

To Store

To BUs

From BUs

Fig. 2: Iterative NTT architecture

Comparing Tables I and II shows that no previous solutions
enable design automation with all the FHE parameters, archi-
tecture options, scalability, and support for reduction methods
used by recent FHE accelerators. Parameters required for the
majority of PQC schemes are smaller than those of FHE [12].

Therefore, AutoNTT provides a single automation solution
that can perform design space explorations including algorith-
mic parameters, architecture options, and design scalability
required by real FHE and PQC accelerators.

III. AUTONTT ARCHITECTURE DESIGNS

Before presenting our automation tool, we first describe
our iterative, dataflow, and hybrid architectures and modulo-
reduction implementations, as well as our optimizations for
each architecture to improve their versatility and scalability.

A. Iterative Architecture
1) Overview: Fig. 2 illustrates the overview of our itera-

tive architecture. We use tensor-product-based iterative NTT
architecture [7] to support a constant polynomial data access
pattern during multiple stages of NTT.

Our optimized architecture has three core modules: BUs,
PolyBuf, and TFBuf. BUs perform computations required for
NTT, while PolyBuf and TFBuf provide the required poly-
nomial data and TF data, respectively. In a design with nBU

BUs, each BU reads two input data from the PolyBuf indices
⌊BU idx/2⌋ and ⌊BU idx/2 + nBU/2⌋, where BU idx ∈
[0, nBU − 1]. The two outputs of each BU are passed to the
PolyBuf index BU idx. Each BU accesses the TF data from
the TFBuf index (BU idx mod (nBU/2)) to optimize the TF
storage as described later. All these connections are unique
and do not depend on the NTT stage; thus, it simplifies the
interconnection between BUs.

0

20

40

60

80

100

Pe
rc

en
ta

ge

Poly Size (N)

#HBM Ports=32 #HBM Ports=16

T

𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 𝟐𝟏𝟑 𝟐𝟏𝟒 𝟐𝟏𝟓 𝟐𝟏𝟔 𝟐𝟏𝟕

T = Double buffering threshold at 25%

Fig. 3: Off-chip memory access vs. compute time for polyno-
mial sizes at two HBM bandwidths (nBU = 256, log q = 54)

2) Polynomial Buffer Optimization: Storing all the limbs
in on-chip memory is not a scalable option, especially when
targeting larger parameters. Hence, access to off-chip memory
for different limbs is required. However, as shown in Fig. 3,
scheduling load, compute, and store sequentially can cause
significant overhead in overall computation after a certain
polynomial size. To reduce this overhead during the processing
of multiple limbs, we support double buffering to hide the off-
chip memory access latency after this overhead reaches 25%
of the compute time. Double buffering threshold is determined
considering performance gain/resource increase ≥ 50%.

The naı̈ve double buffering would simply include 2 more
buffers to load a new limb and store the previous limb’s
results, requiring 4 total buffers (compute uses 2 buffers). As
this limits the scalability, especially for larger parameters, we
optimize the design to use a single extra buffer with two ports
to support double buffering. During the process, this extra
buffer carries the final result of the previous limb computation
and uses two ports to load the new limb while sending the
result to the off-chip memory. We include synchronization
logic for loading and storing data, and for switching between
3 buffers after processing each limb. We connect polyBuf
modules as a chain to load data using the same off-chip
memory port sequentially. The data store is also done similarly.
This helps obtain a highly scalable place-and-route friendly
design for a given number of ports by minimizing the number
of direct connections to load and store modules.

3) TF Buffer Optimization: Fig. 4 provides the overall idea
of the TF access pattern of this architecture for N = 210 and
nBU = 32 when performing NTT. In this example, at each
NTT stage s, a single BU processes c = N/(2 ∗ nBU ) = 16
coefficient pairs with 16 TF values. We define a TF group
(Gi) with c = 16 TFs in each (as shown in the TF index axis).
During the first log c +1 = 5 stages, both BU3 and BU19 only
access values in TF group G0. As the NTT stage s increases,
TFs accessed by BUs within the G0 are doubled. After 5
stages, both BUs switch to G1. At stage s = 6 both BUs
move to G3 and during the last stage only BU19 moves to G19

while BU3 remains on G3. Therefore, two observations can
be summarized. 1) Both BU3 and BU19 only access specific
TF groups out of all the groups. 2) The TF groups accessed
by each BU depend on the BUidx and s (NTT stage).

Based on these observations, the TF index equation for ith

TF value access at stage s can be formulated as TFidx =
{BU idx, ci} & mask, where 0 ≤ ci < c and mask =



0 1 2 3 4 5 6 7 8 9
0

16

32

48

64

304

320

496

NTT stage

TF indices used by BU3 and BU19

TF indices used by BU19

TF indices used by BU3

G0

G1

G2

G3

G19

512
G31

TF index

Fig. 4: TF indices used by BUi and BU(nBU/2+i) in each
NTT stage, when i = 3, nBU = 32, and N = 210

V × U
   BUG0 

S
h

u
ffler

Coarse grained data flow

Load NTT 
POLY

V × U'
   BUGn 

Store NTT 
POLY

(a) Dataflow architecture

. . .

S
h

u
ffler

V × U
   BUGn-1 

S
h

u
ffler

V × U
   BUG1 

Out[0]
Out[4]

Out[2]
Out[6]

Out[3]
Out[7]

Out[1]
Out[5]

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

Stage 0 Stage 1 Stage 2

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

Stage 0 Stage 1 Stage 2

In[0]
In[1]

(b) Normal Cooley-Tukey 
dataflow based BUG with bit reversal

(c) Hardware friendly 
rearranged BUG without bit reversal

Mid[0]
Mid[2]

Mid[1]
Mid[3]

Mid[4]
Mid[6]

Mid[5]
Mid[7]

Out[0]
Out[4]

Out[1]
Out[5]

Out[3]
Out[7]

Out[2]
Out[6]

Mid[0]
Mid[4]

Mid[2]
Mid[6]

Mid[1]
Mid[5]

Mid[3]
Mid[7]

Mid[0]
Mid[4]

Mid[3]
Mid[7]

Mid[2]
Mid[6]

Mid[1]
Mid[5]

V=4

 U=3 

Fine grained data flowTFBuf
Load TF

In[2]
In[3]

In[4]
In[5]

In[6]
In[7]

In[0]
In[1]

In[2]
In[3]

In[4]
In[5]

In[6]
In[7]

Mid[0]
Mid[2]

Mid[1]
Mid[3]

Mid[4]
Mid[6]

Mid[5]
Mid[7]

TFBuf TFBuf

Fig. 5: Dataflow NTT architecture

(1 << s)−1. As s increases during the first (log c +1) stages,
the mask only unveils bits in ci (only G0 values). After (log c+
1) NTT stages, as the mask starts to unveil bits in BU idx,
TF groups (each with c values) start to depend on BU idx.
By storing groups for BU idx and (BU idx + nBU/2) in
the same buffer, we can maximize the sharing and support 2
BUs. For the INTT, the mask becomes ∼ ((1 << (logN −
s− 1))− 1), and we can determine the TF groups and values
accessed during INTT similarly. It is important to note that
the TF group indexes accessed by each BU only depend on
the BU idx and do not depend on the input polynomial size.

TFBuf modules contain the logic to generate TF addresses
based on this optimized storage for both NTT and INTT. Each
TFBuf module contains 2 buffers to support double buffering.

B. Dataflow Architecture
1) Overview: Dataflow architecture unrolls all the NTT

stages by employing dedicated BUs for each stage and pro-
cesses the data in a streaming fashion. We use a butterfly
unit group (BUG) based streaming architecture [9] for our
dataflow architecture as it uses a fixed connection between a
couple of NTT stages without complex data rearrangement and
buffering. Fig. 5(a) shows our overall dataflow architecture.
In the coarse-grained dataflow, multiple BUGs and shuffler
modules are connected in a pipeline to support all NTT
stages. BUG contains a fine-grained dataflow with V ×U BUs
connected in a specific pattern to sample (2 ∗ V ) data and

M
U
X

   V × U BUG0 

. . .

FIFO FIFO

Load NTT POLY
Store NTT POLYTFBuf0Load TF

M
U
X

M
U
X

  V × U BUGn-1 FIFO FIFO
Load NTT POLY

Store NTT POLY
TFBufn-1Load TF

M
U
X

S
h

u
ffler

Fig. 6: Hybrid NTT architecture

support U = log (2 ∗ V ) NTT stages inside it. We include a
partial BUG as the last BUG if logN is not perfectly divisible
by U . Shuffler modules are used between BUGs to rearrange
data for the next BUG. In this architecture, the number of TFs
required for each NTT stage s can be identified as 2s. Similar
to the iterative architecture, we analyze the TF access pattern
based on the BUG size and store only the required TFs for
each stage in their respective TFBuf modules.

2) Remove Bit Reversal in BUG: Fig. 5(b) illustrates the
naı̈ve Cooley-Tukey based BUG, which includes a bit reversed
connection. This would cause logic in the shufflers and TFBuf
modules to be complex. Hence, we rearrange BUs in each
layer as shown in Fig. 5(c) to eliminate bit reversal, thus
reducing additional complexities.

C. Hybrid Architecture
1) Overview: The hybrid architecture has a couple of

unrolled NTT stages in a pipeline, and these unrolled stages
are iteratively used to complete all the logN stages of NTT.
Fig. 6 illustrates our overall hybrid architecture, which also
incorporates BUGs to keep a fixed interconnection across the
unrolled stages. We combine n BUGs vertically to support
larger input vector sizes W = (2∗V ∗n). Multiplexers located
before and after the BUGs help control polynomial loading
and storing, and different rounds of the polynomial processing.
Similar to the dataflow architecture, the shuffler is responsible
for rearranging polynomial data for the next round. FIFOs at
loading and storing data paths help load and store a new limb
and the previously processed limb while BUGs are working
on the current limb.

2) Frequency Optimized Interconnection: In the hybrid ar-
chitecture, increasing input vector size complicates the shuffler
logic and lowers the frequency. To fix this, we analyze unique
access patterns across rounds to optimize interconnections.

Fig. 7(a) shows the naı̈ve monolithic shuffler design with
two (2 ∗ n ∗ V )2 crossbars and (2 ∗ n ∗ V ) buffers. The C0

crossbar reorders incoming data from all the BUGs before
storing them in B0 buffers. Buffers hold data coming during
different clock cycles, and once they receive enough data
to support the output pattern, they start sending data to the
C1 crossbar. The C1 crossbar routes the data back to their
respective output data paths.

As shown in Fig. 7(b), in round 1, local shufflers receive
data from BUGs in a block-cyclic distribution after supporting
polynomial pair distances of 1 and 2 in the BUG. Since the
data needed for the next round follows a cyclic distribution,
inter-BUG communication occurs after the local shufflers. This



Local
shuffler

0
1
2
3

8
9
10
11

. . .

Local
shuffler

4
5
6
7

12
13
14
15

0
1
8
9

2
3
10
11

4
5

12
13

6
7
14
15

0
4
8

12

2
6
10
14

1
5
9

13

3
7
11
15

Local
shuffler

Local
shuffler

0
16
32
48

2
18
34
50

1
17
33
49

3
19
35
51

0
16
32
48

2
18
34
50

1
17
33
49

3
19
35
51

Block-cyclic 
dist.

Cyclic 
dist.

Round 1 Round 2

Cyclic 
dist.

Inter BUG
shuffler

0
4
8

12

2
6
10
14

1
5
9

13

3
7
11
15

Cyclic 
dist.

Inter BUG
shuffler

Remaining rounds with cyclic dist.

(a) (c)

(b)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(2*n*V)2
xbar

(2*n*V)
buffers

BUG0

BUG1
. . .

BUGn-1

BUG0

BUG1
. . .

BUGn-1

C0 B0 C1

(2*n*V)2
xbar

(2*V)2
xbar

(2*V)2
xbar

(2*V)2
xbar

(2*V)
buffers

(2*V)
buffers

(2*V)
buffers

(2*V)2
xbar

(2*V)2
xbar

(2*V)2
xbar

BUG0

BUG1
. . .

BUGn-1

C0 B0 C1

BUG0

BUG1
. . .

BUGn-1

Local shuffler Inter BUG 
shuffler

Fig. 7: (a) Monolithic shuffler design with two large crossbars,
(b) Inter-BUG and intra-BUG data shuffle patterns in differ-
ent rounds, (c) Hardware-friendly split shuffler design with
smaller local crossbars and simplified inter-BUG shuffler

output will be used to process polynomial pair distances of 4
and 8. During round 2, the shuffler needs to rearrange data
to support pairs with distances 16 and 32, as shown in the
figure. However, in this round, as the data is already in cyclic
distribution, the output data for each BUG is located in the
local shuffler. Therefore, inter BUG shuffler just forwards the
data. Based on this access pattern, the remaining stages can
also be supported only using the local shuffler with cyclic data
distribution, and no extra inter-BUG connection is needed.

Based on this access pattern, we design a hardware-friendly
split shuffler as shown in Fig. 7(c) by breaking the initial
monolithic modules of C0, B0, and C1 into smaller modules
to work as local shufflers. An inter-BUG shuffler is added
after local shufflers to support fixed inter-BUG interconnection
required in round 1 and forwarding connections required in the
remaining rounds. Compared to very large two (2 ∗ n ∗ V )2

monolithic crossbars, the split shuffler contains fewer connec-
tions, helping the routing and frequency. It is also noteworthy
to mention that the inter-BUG connection required in the inter-
BUG shuffler does not depend on the input polynomial size,
but only on the architectural parameter, input vector size.

D. Different Modular Reductions & Multi Word Multiplication

We implement optimized Barrett reduction [27], general
Montgomery reduction [20], and customizable word level
Montgomery reduction for NTT-friendly primes [21] in our
automation framework. During our testing, we noticed that
Will-Ko reduction used in [14] consumes more LUTs, thus
limiting the scalability; indeed, the same authors confirmed
that Barrett reduction is better [15]. Hence, our default frame-
work does not implement Will-Ko reduction. We also provide
an interface in our framework for users to integrate custom
reduction methods written in a code template. We use arbitrary
precision data types [28] available in Vitis HLS to reduce
resources. However, we noticed that naı̈ve HLS coding does

Initialize

DSE - I

DSE - D

DSE - H

Calc. max
#BUs

DSP resource
model

Calc. next largest
BU arrangement

Arch. template

Latency/throughput
calc.

Perf. model

FPGA resources &
off-chip BW
estimation

FPGA
resource 
models

Saved
design
config

Initialize 
L=(big number)

Latency
<=L

L=Latency

design
config

design
config

Select the
best config

Code
generator

Iterative Dataflow Hybrid

HLS
design

TAPA
[32]Vitis

N

FinishY

Relax resource
target

Resources
& BW 

satisfied?

Y

N

Y

DSE-X

Build
success?

design
config

USER INPUT

TOOL 
OUTPUT

LEGEND:
Our tool
design

Existing
tools

Save
config

N

Off-chip
BW 

model

Perf req: Latency and/or throughput
Architecture choice (I, D, H)
Limb parallelism
Reduction: Barrett, Montgomery, WLM, Custom

Optional parameters:
FHE params: Poly size &
mod size
Device info: FPGA
resources & off-chip BW

Necessary parameters:

Fig. 8: AutoNTT design automation flow

not efficiently use the DSPs available in FPGA. Hence, we
implement multi-word multiplication in HLS by dividing the
multiplication into smaller parts to fit into individual DSPs,
reducing the DSP usage compared to naı̈ve HLS coding.

IV. DESIGN AUTOMATION AND EXPLORATION

With three highly scalable and optimized NTT architectures
and support for common reduction methods, AutoNTT enables
systematic design space exploration to find the optimal design
choice for user given parameters.

As shown in Fig. 8, AutoNTT takes FHE parameters, FPGA
resources, off-chip memory bandwidth, and other optional
parameters as inputs. Then it determines the maximum number
of BUs based on available DSPs using the DSP resource
model. For each architecture, starting from the largest design
configuration that fits into the available BU budget, AutoNTT
searches for the design with the lowest latency and resources
using the latency and resource analytical models. Since each
architecture scales differently, the tool selects the optimal
configuration for each and then chooses the best overall.
Finally, the selected architecture option and configuration are
passed to the code generator to generate the HLS code.

We use N to denote polynomial size, P for the total pipeline
depth of the hardware modules, and X for the total number of
unrolled NTT stages. X is 1 for iterative architecture, logN
for dataflow architecture, and U for hybrid architecture. W

denotes the input vector size and Y =
⌈
logN
U

⌉
−1 denotes the

number of shufflers. Our analytical models are as follows.
1) Latency (L): Latency is the total number of cycles

required to process a single polynomial. Similar to prior
studies [16], we use 250MHz as the target clock frequency
when converting it to time.

L =


(
N
W + P

)
× logN if iterative

N
W + P +

∑Y
i=1 Ri if dataflow

N
W + P +

∑Y
i=1 max{ N

W , P +Ri} if hybrid
(1)



where Ri represents the delay in the ith shuffler in the dataflow
architecture, and ith round in the hybrid architecture.

2) DSP Resources (D): Based on the data width, reduction
method, and our multi-word multiplication (Section III-D), we
calculate how many DSPs are required for modular multipli-
cation. If the number of DSPs required for a BU is dBU , the
number of DSPs for the entire design can be calculated as:

D = dBU × W/2 × X (2)
3) BRAM Resources (B): Using URAM causes II viola-

tions during polyBuf optimizations, as Vitis HLS does not
exploit read-first mode for URAMs. So, we prioritize assigning
polynomial data into BRAMs. Without considering double
buffering for simplicity, the number of buffers required by
iterative and hybrid architectures is equal to W , and the depth
of each buffer d = 2N

W . So, the total number of BRAMs is:

B = W ×
⌈

log q

bram width

⌉
×

⌈
d

bram depth

⌉
(3)

In the dataflow architecture, each shuffler gets W buffers,
and the depth di depends on the shuffler index i. Hence, we
can calculate the total BRAMs by accumulating the BRAMs
required for each shuffler, which follows the above equation.

4) URAM Resources (U): We prioritize assigning TFs to
URAMs to maintain a balance between resources. Since we do
TF storage optimization for each architecture, URAM storage
varies for each architecture. For each architecture, we get
the total URAM consumption by calculating the number of
URAMs required for each TFBuf module based on the TFs
stored in the buffer, uram width, and uram depth.

5) LUT & FF Resources: We use a linear interpolation-
based method to estimate LUTs and FFs in a design. For
each task, we obtain a linear model of how LUT and FF
usages scale up based on the data width. For modules like
crossbars, we use normalized utilization based on the number
of inputs for the model. Since the linear models only output
an estimation, we add ±5% tolerance for the output.

6) Off-Chip Memory Bandwidth (BW): To ease the mem-
ory coalescing, we define the DRAM WORD SIZE vari-
able as either 4 or 8 to denote the number of bytes required
for each value based on the data width log q. Considering both
loading and storing, the total data Td for the polynomial is
Td = 2N . With TF storage optimization, the total TFs Ttf

loaded from off-chip memory depend on architecture-specific
optimizations, so we calculate Td = Ttf separately for TF
loading. The total bandwidth required for each is:

BW = Td ×DRAM WORD SIZE/L (4)

V. EVALUATION

A. Experimental Setup

AutoNTT is evaluated on the AMD/Xilinx Alveo U200
[29], U280 [30] and U50 [31] datacenter FPGAs. We use
the TAPA [32] framework to develop our designs as task-
parallel HLS designs and help improve the floorplanning. We
use Vitis HLS 2023.2 to synthesize the HLS design to RTL
and Vivado 2023.2 to place and route the designs. We run
all designs on the actual FPGA boards with XRT 2022.2 and

measure the FPGA kernel execution time (excluding CPU-to-
FPGA transfer time). Unless otherwise specified, we assume
both polynomial and TF data are available on off-chip memory
at the start of the process. We report post place-and-route
resource utilization. All designs shown in this section are built
to support both NTT and INTT on the same hardware.

B. Comparison with State-of-the-art Efforts

Table IV compares our automatically generated NTT de-
signs with state-of-the-art efforts. Based on our architectures,
we generate these designs in a way similar to the original
design configuration or similar to the resource utilization. As
different architectures utilize different resources effectively, for
a fair comparison, we define an Area Time Product (ATP)
metric (lower is better), including all the resources.
1. Compared to the RTL-based exploration tool NTTGen [16],

our dataflow and hybrid architectures deliver an average
1.15x improvement in latency over their simulation results
while using 1.65x fewer BRAMs on average due to the
integration of BUGs in our designs.

2. Proteus [17] generates a smaller design with 1 BU per
NTT stage. Designs generated by AutoNTT for similar
configurations consume more resources but achieve higher
frequency and provide better average latency.

3. OpenNTT [18] uses on-the-fly TF generation to reduce
on-chip memory. However, this consumes more DSPs and
LUTs. Instead, as our optimizations reduce on-chip mem-
ory, we utilize other resources for BU computation and
achieve similar performance with 1.64x average ATP gain.

4. By operating at 300MHz, ESC-NTT [10] achieves a lower
latency, but if AutoNTT is also operated at the same fre-
quency, it can achieve a similar latency. AutoNTT achieves
1.36x better throughput compared to them.

5. SAM’s [33] lower frequency and reliance on accessing
off-chip memory to support high polynomial sizes slow
them down at FHE parameters. By using similar resources
AutoNTT achieves 8.48x average latency improvement.

6. Compared to recent FHE accelerators FAB [14], Poseidon
[25], and HEAP [15], AutoNTT generates designs with
4.35x average throughput gain.

7. Compared to [9], our optimized shuffler reduces on-chip
buffer usage by 62.35%. While their custom Barrett re-
duction uses fewer DSPs than AutoNTT, we achieve lower
latency with 1.33x ATP improvement.
In summary, on average, AutoNTT achieves 2.48x and

3.61x latency and throughput improvements compared to
all these RLT-based implementations, providing competitive
performance. AutoNTT achieves 3.53x ATP improvement on
average, indicating it provides a better utilization of overall
resources. It is also important to note that our solution offers
significantly more flexibility than all these works.

C. Design Space Exploration Results

We performed design space exploration for the polynomial
range of 214−217, our supported data width range with a stride
of 4, and using Barrett reduction. We provided U280 FPGA



TABLE IV: Comparison of AutoNTT with previous work

Method N q Red. Device Freq.
(MHz)

Latency
(µs)

Throughput
(NTT/s) kLUT / kFF / DSP / BRAM / URAM ATP

NTTGen [16]
210 28

Mer Virtex7 210 1.10 - 206 / 159 / 640 / 80 / 0 238
AutoNTT-D3 Mer U50 250 0.89 4,747,100 203 / 165 / 640 / 48 / 0 187

NTTGen [16]

212

30
B U200 250 24.70 - 54 / 56 / 288 / 84 / 0 2,381

AutoNTT-H3 B U200 250 24.78 40,352 58 / 42 / 288 / 72 / 0 2,279
Proteus [17]

32
WLM Virtex7 150 13.80 - 8 / 4 / 44 / 8 / 0 176

AutoNTT-D WLM U50 250 9.94 100,506 27 / 25 / 72 / 19 / 0 284
OpenNTT [18]

60
WLM Virtex7 240 13.10 - 35 / 44 / 352 / 18 / 0 1,176

AutoNTT-I WLM U50 250 13.21 37,826 26 / 24 / 152 / 64 / 0 702
Proteus [17]

64

WLM Virtex7 150 13.80 - 23 / 18 / 220 / 16 / 0 764
AutoNTT-D WLM U50 250 9.94 100,506 51 / 52 / 228 / 38 / 0 733

ESC-NTT [10] WLM U280 300 3.81 1,171,875 523 / 1,478 / 6,518 / 2752/ 0 6,706
AutoNTT-D WLM U280 234 4.58 1,598,961 469 / 608 / 4,800 / 192 / 0 5,559

HEAP [15]

213
36

B U280 300 - 210,000 - /
AutoNTT-I B U280 231 1.80 556,534 699 / 504 / 5,888 / 1,024 / 384 4,027

NTTGen [16]4
52

Mer U200 220 4.50 - 276 / 250 / 480 / 400 / 0 1,265
AutoNTT-H3 Mer U200 233 3.65 273,416 228 / 202 / 480 / 188 / 0 802

FAB [14]
214 54

WK U280 300 - 167,000 - /
AutoNTT-I B U280 231 3.11 321,046 663 / 608 / 5,632 / 1,152 / 256 6,284

Poseidon [25]

216

32
B U280 450 - 12,474 358 / 344 / 4,032 / 1,024 / 0 /

AutoNTT-H B U280 249 9.43 105,986 491 / 435 / 2,816 / 896 / 0 8,747
OpenNTT [18]

52
WLM ZCU102 210 78.40 - 157 / 117 / 896 / 98 / 0 19,882

AutoNTT-I WLM U50 250 66.54 15,029 80 / 60 / 288 / 498 / 0 12,323
SAM [33]

64
- U250 165 380.00 - 267 / 328 / 2,736 / 2,1262/ 0 414,732

AutoNTT-I B U200 249 39.14 25,550 206 / 160 / 2,048 / 718 / 0 24,517

Kim et al. [9]

217
62

B xcvu190 200 3760.001 - 365 / 335 / 1,332 / 2,2582 / 0 3,226,080
AutoNTT-D B U280 250 3457.001 12,461 243 / 231 / 2,176 / 850 / 0 2,419,900
SAM [33]

64
- U250 165 560.00 - 267 / 328 / 2,736 / 2,1262/ 0 611,184

AutoNTT-I B U200 246 77.11 12,969 218 / 166 / 2,048 / 1,343 / 0 58,218

Red.: Reduction. Freq.: Frequency. -: Not available. ATP: Area Time Product = Latency × (kLUT + kFF +DSP +BRAM + 8 ∗ URAM)/5.
Mer: Mersenne prime reduction. B: Barrett reduction. WLM: Word Level Montgomery reduction. WK: Will-Ko reduction. 1: 42 limbs. 2: Converted KB
to 36K BRAM. 3: As in the original design, TFs are assumed to be in on-chip memory. 4: Considered one limb resources for actual on board evaluation.

H
H

H

I

H
H

I

I

I
I

I

I

I
I

I

I

I
I

I

I

I
I

I

I

I
I

I

I

H
H

I

I

I
I

I

I

I

I

I

I

0
32
64
96
128
160
192
224
256
288

0

5

10

15

20

25

30

35

40

28 32 36 40 44 48 52 56 60 64

#B
Us

La
te

nc
y (

us
)

log(q)

𝟐𝟏𝟒 𝟐𝟏𝟓 𝟐𝟏𝟔 𝟐𝟏𝟕 #𝑩𝑼𝒔 𝑳𝒂𝒃𝒍𝒆: 𝑨𝒓𝒄𝒉.

Fig. 9: Latency of different design points on U280. The results
of the best architecture configurations are shown here.

resources as the target resources, and limb parallelism is set
to 1 to test the scalability of our designs. Fig. 9 and Fig. 10
show the best latency and the best throughput design points,
respectively. In general, iterative architecture provides a better
latency while dataflow architecture provides better throughput.

However, as parameters change, other options emerge as a
better solution, breaking the general trend. For example, at
log q = 56, when N = 214 and 215, the hybrid architecture
supports a design of 160 BUs (i.e., (16 × 5 BUG) × 2),
whereas other architectures are limited to fewer BUs, resulting
in improved latency and throughput. However, for polynomial

D

D

H
I

D

D

I
I

D

D

D
D

D

D

D
D

D

D

D
D

D

D

D
D

D

D

D
D

H

H
I I

I

I
I I

I

I
I I

0

64

128

192

256

320

384

448

512

0
100
200
300
400
500
600
700
800
900

28 32 36 40 44 48 52 56 60 64

#B
Us

Th
ro

ug
hp

ut
 (k

N
TT

/s
)

log(q)

𝟐𝟏𝟒 𝟐𝟏𝟓 𝟐𝟏𝟔 𝟐𝟏𝟕 #𝑩𝑼𝒔 𝑳𝒂𝒃𝒍𝒆: 𝑨𝒓𝒄𝒉.

Fig. 10: Throughput of different design points on U280. The
results of the best architecture configurations are shown here.

sizes larger than 215, the hybrid architecture with (16×5) BUG
experiences underutilized unrolled stages in the final round,
causing the iterative design to outperform it once again. Thus,
the results of the DSE emphasize the significance of leveraging
different design options to meet a wide range of latency and
throughput targets while adapting to varying resources.

D. Results Breakdown for Architecture Optimizations

1) Polynomial Buffer Optimization: Table V summarizes
the BRAM savings on the U280 with two large data widths and
higher nBU counts, when N = 217. By using 25% (relatively)



TABLE V: BRAM saving of polynomial buffer optimization
Data Width

(bit)
nBU

#BRAMs 18K(%)
w/o Opt w/ Opt

54 256 3,072 (76.19%) 2,304 (57.14%)
64 128 2,048 (50.79%) 1,536 (38.09%)

0

500

1000

1500

2000

2500

#U
RA

M
 b

an
ks

 fo
r T

Fs

Poly Size(N)

w/o TF Opt w/ TF Opt #URAMs in U280 = 960

𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 𝟐𝟏𝟑 𝟐𝟏𝟒 𝟐𝟏𝟓 𝟐𝟏𝟔 𝟐𝟏𝟕

Fig. 11: URAM savings from TF buffer optimization for
nBU = 256, log q = 54. ×: required URAM exceeds limit.

less BRAMs, this optimization significantly reduces BRAM
usage for larger parameters in the iterative design.

2) TF Buffer Optimization: Fig. 11 indicates the total
URAM savings from our TF buffer optimization for the
iterative design. It shows that our optimization enables support
for larger polynomial sizes with a URAM savings of ∼94%,
making previously prohibitively expensive cases feasible.

3) Frequency Improvement From Shuffler Optimization:
Table VI shows the frequency gain achieved by our hardware-
friendly shuffler design compared to the monolithic shuffler
design. This enables larger vector sizes, such as 64 and 128,
with 1.65x average frequency gain in the hybrid architecture.

TABLE VI: Frequency improvement from the split shuffler
Data

Width Arch. Config Vector
Size

Freq w/o
Opt(MHz)

Freq w/
Opt(MHz)

32 (8x4 BUG) x 8 128 161 249
36 (4x3 BUG) x 16 128 120 250
52 (16x5 BUG) x 2 64 175 233

4) Multi-word Multiplication: Table VII shows the re-
source and latency comparison of our optimized BU with
different reduction methods for two data sizes. Other data sizes
also follow a similar trend. Using multi-word multiplication,
AutoNTT achieves similar resource utilization and better la-
tency compared to those RTL-based designs.

TABLE VII: Comparison of BU resource and latency
Data

Width Reduction Design LUT FF DSP Latency
(cycles)

30

B NTTGen [16] 1081 920 12 14
B AutoNTT 766 403 11 10

WLM OpenNTT [18] 380 449 7 14
WLM AutoNTT 635 429 6 10

M AutoNTT 813 434 11 10

52

B NTTGen [16] 1837 1682 17 19
B AutoNTT 1319 1121 17 12

WLM OpenNTT [18] 1476 1787 14 20
WLM AutoNTT 1168 891 9 11

M AutoNTT 1491 1075 17 12

B: Barrett. M: Montgomery. WLM: Word Level Montgomery.

VI. RELATED WORK

The NTT studies found in the literature are twofold: 1) ar-
chitectures supporting a set of fixed parameters, 2) automation
frameworks. Zhang et al. [7] proposed a tensor product-based
iterative architecture with a unified communication pattern
between different NTT stages. Kim et al. [9] proposed an NTT
architecture by combining 12 BUs as a group and connecting
them in a pipeline fashion to support a large polynomial size
of 217 and a higher number of limbs compared to prior work.
Duong-Ngoc et al. [8] presented an architecture with 8 × 4
2D BU array and conflict-free memory access pattern. All
these architectures are RTL-based fixed architectures and do
not provide automation to support diverse conditions.

Hirner et al. [17] proposed a tool to generate radix-2-based
NTT architectures with single-path delay feedback and multi-
path delay commutator approaches. However, it only supports
dataflow architecture and limits a single BU per NTT stage,
limiting the scalability and performance. SAM [33] proposes
an NTT architecture to support very large polynomial sizes and
data sizes used in zero-knowledge proof (ZKP) applications.
Due to larger parameters, they always communicate with off-
chip memory, hence limiting the performance when it comes
to FHE parameters. OpenNTT [18] provides an automation
tool to generate iterative designs, but does not explore other
design configurations and has a limited input vector size in its
results. Mu et al. [12] proposed an NTT automation solution
with a conflict-free memory access pattern; but their glue logic
between BUs and buffers is implemented with MUXes and is
not scalable.

NTTGen [16] is an automation framework that is closest
to ours and supports different architectures. However, they
only target HE parameters and generate smaller NTT units to
process multiple limbs in parallel, which limits the scalability.
They use a streaming permutation network (SPN) after each
BU layer to support different data access patterns between
stages. SPN is a building block that supports N-to-N connec-
tion using two spatial networks and one temporal network [16].
However, using generalized SPN after every layer increases the
latency and BRAM resources.

VII. CONCLUSION

NTT implementations on FPGA span across diverse archi-
tecture options and configurations to support diverse input pa-
rameters and performance targets. The current approaches have
limited design space by supporting limited NTT architectures
and FHE parameters, while the scalability of their designs
does not meet the expectations of recent FHE accelerators.
Therefore, we present AutoNTT that can support a wide range
of FHE parameters, highly scalable iterative, dataflow, and
hybrid architectures with diverse configurations, and common
modular reduction algorithms. AutoNTT performs design
space exploration and generates highly efficient NTT designs
for a given resource budget. Supporting HLS based design
approach, AutoNTT generates NTT accelerator designs with
2.48× better latency and 3.61× better throughput on average,
while maintaining a similar resource utilization.



REFERENCES

[1] M. Zheng, Q. Lou, and L. Jiang, “Primer: Fast private transformer infer-
ence on encrypted data,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2023, pp. 1–6.

[2] J. Park, S. Lee, and J. Lee, “Ntt-pim: Row-centric architecture and
mapping for efficient number-theoretic transform on pim,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2023, pp.
1–6.

[3] J. Casas, Z. Yang, W. Wang, J. Yang, and A. Godbole, “Towards a
formally verified fully homomorphic encryption compute engine,” in
2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE,
2023, pp. 1–6.

[4] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, ser. ISCA ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 173–187.

[5] M. Kumar and P. Pattnaik, “Post quantum cryptography (pqc)-an
overview,” in 2020 IEEE High Performance Extreme Computing Con-
ference (HPEC). IEEE, 2020, pp. 1–9.

[6] “Microsoft SEAL (release 3.2),” https://github.com/Microsoft/SEAL,
Feb. 2019, microsoft Research, Redmond, WA.

[7] Y. Zhang, S. R. Sathi, Z. Kou, S. Sinha, and W. Zhang, “Tensor-product-
based accelerator for area-efficient and scalable number theoretic trans-
form,” in 2023 IEEE 31st Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2023,
pp. 174–183.

[8] P. Duong-Ngoc, S. Kwon, D. Yoo, and H. Lee, “Area-efficient number
theoretic transform architecture for homomorphic encryption,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 3,
pp. 1270–1283, 2023.

[9] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar,
“Hardware architecture of a number theoretic transform for a boot-
strappable rns-based homomorphic encryption scheme,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 56–64.

[10] Z. Guan, Y. Zhu, Y. Huang, L. Lei, X. Wang, H. Jia, Y. Chen,
B. Zhang, J. Dong, and S. Bian, “Esc-ntt: An elastic, seamless and
compact architecture for multi-parameter ntt acceleration,” in 2024
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2024, pp. 1–6.

[11] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, M. Becchi, and A. Aysu,
“A flexible and scalable ntt hardware : Applications from homomorphi-
cally encrypted deep learning to post-quantum cryptography,” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2020, pp. 346–351.

[12] J. Mu, Y. Ren, W. Wang, Y. Hu, S. Chen, C.-H. Chang, J. Fan, J. Ye,
Y. Cao, H. Li, and X. Li, “Scalable and conflict-free ntt hardware
accelerator design: Methodology, proof, and implementation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 42, no. 5, pp. 1504–1517, 2023.

[13] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the twenty-fifth
international conference on architectural support for programming
languages and operating systems, 2020, pp. 1295–1309.

[14] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An fpga-based accel-
erator for bootstrappable fully homomorphic encryption,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 882–895.

[15] R. Agrawal, A. Chandrakasan, and A. Joshi, “Heap: A fully ho-
momorphic encryption accelerator with parallelized bootstrapping,” in
2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA), 2024, pp. 756–769.

[16] Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Nttgen:
a framework for generating low latency ntt implementations on fpga,” in
Proceedings of the 19th ACM International Conference on Computing
Frontiers, 2022, pp. 30–39.

[17] F. Hirner, A. C. Mert, and S. S. Roy, “Proteus: A pipelined ntt archi-
tecture generator,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2024.

[18] F. Krieger, F. Hirner, A. C. Mert, and S. S. Roy, “Openntt: An
automated toolchain for compiling high-performance ntt accelerators in
fhe,” Cryptology ePrint Archive, 2024.

[19] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[20] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[21] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of a
fast and scalable ntt-based polynomial multiplier architecture,” in 2019
22nd Euromicro Conference on Digital System Design (DSD), 2019, pp.
253–260.

[22] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19,
pp. 297–301, 1965. [Online]. Available: https://api.semanticscholar.org/
CorpusID:121744946

[23] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun and
profit,” in Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, ser. AFIPS ’66 (Fall). New York, NY, USA: Association
for Computing Machinery, 1966, p. 563–578.

[24] R. Agrawal, L. De Castro, C. Juvekar, A. Chandrakasan, V. Vaikun-
tanathan, and A. Joshi, “Mad: Memory-aware design techniques for
accelerating fully homomorphic encryption,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 685–697.

[25] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 870–881.

[26] B. Zhang, Z. Cheng, and M. Pedram, “An iterative montgomery modular
multiplication algorithm with low area-time product,” IEEE Transactions
on Computers, vol. 72, no. 1, pp. 236–249, 2023.

[27] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 2019, pp. 1–8.

[28] AMD/Xilinx, “Vitis high-level synthesis user guide (ug1399),”
2023. [Online]. Available: https://docs.amd.com/r/2023.2-English/
ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types

[29] ——, “Alveo u200 and u250 data center accelerator cards data sheet
(ds962),” 2023. [Online]. Available: https://docs.amd.com/r/en-US/
ds962-u200-u250

[30] ——, “Alveo u280 data center accelerator card data sheet (ds963),”
2023. [Online]. Available: https://docs.xilinx.com/r/en-US/ds963-u280/
Summary

[31] ——, “Alveo u50 data center accelerator card data sheet (ds965),” 2023.
[Online]. Available: https://docs.amd.com/r/en-US/ds965-u50/Summary

[32] L. Guo, Y. Chi, J. Lau, L. Song, X. Tian, M. Khatti, W. Qiao, J. Wang,
E. Ustun, Z. Fang, Z. Zhang, and J. Cong, “TAPA: A scalable task-
parallel dataflow programming framework for modern FPGAs with co-
optimization of HLS and physical design,” ACM Trans. Reconfigurable
Technol. Syst., vol. 16, no. 4, dec 2023.

[33] C. Wang and M. Gao, “Sam: A scalable accelerator for number theoretic
transform using multi-dimensional decomposition,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–9.

https://github.com/Microsoft/SEAL
https://api.semanticscholar.org/CorpusID:121744946
https://api.semanticscholar.org/CorpusID:121744946
https://docs.amd.com/r/2023.2-English/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types
https://docs.amd.com/r/2023.2-English/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types
https://docs.amd.com/r/en-US/ds962-u200-u250
https://docs.amd.com/r/en-US/ds962-u200-u250
https://docs.xilinx.com/r/en-US/ds963-u280/Summary
https://docs.xilinx.com/r/en-US/ds963-u280/Summary
https://docs.amd.com/r/en-US/ds965-u50/Summary

	Introduction
	Background and Motivation
	NTT Implementation for FHE
	Motivation for AutoNTT

	AutoNTT Architecture Designs
	Iterative Architecture
	Overview
	Polynomial Buffer Optimization
	TF Buffer Optimization

	Dataflow Architecture
	Overview
	Remove Bit Reversal in BUG

	Hybrid Architecture
	Overview
	Frequency Optimized Interconnection

	Different Modular Reductions & Multi Word Multiplication

	Design Automation and Exploration
	Latency (L)
	DSP Resources (D)
	BRAM Resources (B)
	URAM Resources (U)
	LUT & FF Resources
	Off-Chip Memory Bandwidth (BW)


	Evaluation
	Experimental Setup
	Comparison with State-of-the-art Efforts
	Design Space Exploration Results
	Results Breakdown for Architecture Optimizations
	Polynomial Buffer Optimization
	TF Buffer Optimization
	Frequency Improvement From Shuffler Optimization
	Multi-word Multiplication


	Related Work
	Conclusion
	References

