
Demystifying the Memory System of Modern Datacenter FPGAs
for Software Programmers through Microbenchmarking

Alec Lu, Zhenman Fang, Weihua Liu, Lesley Shannon

{alec_lu,zhenman,weihua_liu,lesley_shannon}@sfu.ca

Simon Fraser University, Canada

ABSTRACT
With the public availability of FPGAs from major cloud service

providers like AWS, Alibaba, and Nimbix, hardware and software

developers can now easily access FPGA platforms. However, it is

nontrivial to develop efficient FPGA accelerators, especially for

software programmers who use high-level synthesis (HLS).

The major goal of this paper is to figure out how to efficiently

access the memory system of modern datacenter FPGAs in HLS-

based accelerator designs. This is especially important for memory-

bound applications; for example, a naive accelerator design only

utilizes less than 5% of the available off-chip memory bandwidth.

To achieve our goal, we first identify a comprehensive set of factors

that affect the memory bandwidth, including 1) the number of

concurrent memory access ports, 2) the data width of each port, 3)

the maximum burst access length for each port, and 4) the size of

consecutive data accesses. Then we carefully design a set of HLS-

based microbenchmarks to quantitatively evaluate the performance

of the Xilinx Alveo U200 and U280 FPGA memory systems when

changing those affecting factors, and provide insights into efficient

memory access in HLS-based accelerator designs. To demonstrate

the usefulness of our insights, we also conduct two case studies to

accelerate the widely used K-nearest neighbors (KNN) and sparse

matrix-vector multiplication (SpMV) algorithms. Compared to the

baseline designs, optimized designs leveraging our insights achieve

about 3.5x and 8.5x speedups for the KNN and SpMV accelerators.

CCS CONCEPTS
• Hardware→ Reconfigurable logic and FPGAs.

KEYWORDS
Datacenter FPGAs; Memory System; HLS; Benchmarking

ACM Reference Format:
Alec Lu, Zhenman Fang, Weihua Liu, Lesley Shannon. 2021. Demystify-

ing the Memory System of Modern Datacenter FPGAs for Software Pro-

grammers through Microbenchmarking. In 2021 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’21), February 28–
March 2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3431920.3439284

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

FPGA ’21, February 28–March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00

https://doi.org/10.1145/3431920.3439284

1 INTRODUCTION
With the end of general-purpose CPU scaling due to power and

utilization walls [15], customizable accelerators on FPGAs have

gained increasing attention in modern datacenters due to their

high flexibility, low power, high performance and energy-efficiency.

In the past few years, all major cloud service providers—such as

Amazon Web Services [3], Microsoft Azure [21], Alibaba Cloud [1],

and Nimbix [22]—have deployed FPGAs in their datacenters. As a

result, hardware and software developers can easily access FPGA

computing platforms as a cloud service. However, it is nontrivial to

design efficient accelerators on these FPGAs, especially for software

programmers who use high-level languages such as C/C++.

One of the critical programming challenges is to design efficient

communication between the accelerator and the off-chip memory

system, and between multiple accelerators. It is especially chal-

lenging for communication and/or memory bound accelerators

designed in high-level synthesis (HLS) languages like HLS C/C++.

For example, as observed in [14], an HLS-based design that uses

32-bit data types, which is common in software programs (e.g., int

and float), only utilizes 1/16 of the off-chip memory bandwidth.

Another study in [36] found that the maximum effective off-chip

memory bandwidth for an HLS-based design—10GB/s for DDR3,

about 83% of the theoretical peak bandwidth 12.8GB/s—can only

be achieved when the memory access port width is at least 512-bit

and the consecutive data access size is at least 128KB.

In fact, in this paper, we find that there are more factors (summa-

rized in Section 3.1) affecting the effective memory system perfor-

mance which an HLS-based accelerator design can achieve. For ex-

ample, without careful tuning of the maximum burst access length

for each memory access port, adding more ports can lead to un-

stable degradation of the total effective memory bandwidth that

the design can achieve by up to 3x, which is shown in Figure 3(a)

and explained in Section 4.3.1. Unfortunately, neither the HLS re-

port [34] nor the hardware emulation (i.e., register-transfer level

simulation) [33] accurately models the effective off-chip memory

bandwidth under all those affecting factors.

In this paper, our goal is to demystify the effective memory

system performance of modern datacenter FPGA boards—which

usually have multiple FPGA dies and multiple DRAM or HBM

banks in a single board [31, 32]—under a comprehensive set of

affecting factors. With a quantitative evaluation of the recent Xilinx

Alveo U200 and U280 datacenter FPGA boards [31], we aim to

provide insights for software programmers into how to access the

memory system in their HLS-based accelerator designs efficiently.

In summary, this paper makes the following contributions.

1. We identify a comprehensive set of factors that affect the mem-

ory system performance in HLS-based FPGA accelerators. This

includes 1) the number of concurrent memory access ports, 2)

https://doi.org/10.1145/3431920.3439284
https://doi.org/10.1145/3431920.3439284

the data width of each port, 3) the maximum burst access length

for each port, and 4) the size of consecutive data accesses.

2. We develop a suite of open source HLS-C/C++ microbench-

marks to quantitatively evaluate the effective bandwidth, la-

tency, and resource usage of the off-chip memory access and

the accelerator-to-accelerator streaming in modern datacenter

FPGAs, while systematically changing those affecting factors.

3. We provide the following insights for software programmers: 1)

The total effective off-chip memory bandwidth scales almost lin-

early with the aggregated port width of all concurrent memory

access ports. For a single DDR4 bank whose theoretical peak

bandwidth is 19.2GB/s, it flattens at 512-bit: the effective peak

read and write bandwidths are about 18.01GB/s and 16.56GB/s.

For a single HBM2 bank whose theoretical peak bandwidth is

14.4GB/s, it also flattens at 512-bit: the effective peak read and

write bandwidths are about 13.18GB/s and 13.17GB/s. 2) For

multiple memory ports to access a single DRAM bank, in order

to achieve the best stable peak bandwidth, the maximum burst

access size for each port—which is the product of each port’s

data width and maximum burst access length—should be set to

16Kb (i.e., 2KB). However, the single port access does not have

this requirement. For HBM, typically, each memory access port

connects to a separate HBM bank. 3) The effective off-chip mem-

ory bandwidth increases as the size of consecutive data accesses

increases, and flattens when this size is around 128KB. 4) For

accelerator-to-accelerator streaming ports, the total (on-chip)

communication bandwidth scales linearly with both the data

width per port (up to 1024-bit per port) and the number of ports

(flattens at 16 ports) independently. 5) The optimal configuration

should be chosen by jointly considering the computing-memory

balance and resource utilization in the design, instead of aggres-

sively picking the peak bandwidth configuration.

4. We also conduct two accelerator case studies on the widely

used K-nearest neighbors (KNN) [2, 8] and sparse matrix-vector

multiplication (SpMV) [6, 25] algorithms to demonstrate how to

leverage our results and insights during design space exploration

for HLS-based accelerators. Optimized accelerator designs for

KNN and SpMV with our insights can achieve 3.5x and 8.5x

speedups over the baseline designs on an Alveo U200 FPGA.

2 DATACENTER FPGAS AND OUR FOCUS
Recently, a variety of FPGA platforms have been deployed in data-

centers, such as Microsoft Catapult [24], AWS F1 instance [3], Al-

ibaba F1 and F3 instances [1], IBM OpenCAPI [27], Intel HARP and

HARPv2 platforms [4], Xilinx Alveo boards in Nimbix [22, 31, 32],

and Intel Stratix X [19]. To meet the ever-increasing demand in

datacenter workloads, both the computing resource and memory

bandwidth provided by these FPGAs keep increasing. Typically, a

single FPGA board consists of multiple FPGA dies and multiple

DRAMs and even HBMs (high-bandwidth memory).

In this paper, we mainly focus on measuring the performance of

off-chip memory access by accelerators using the memory-mapped

AXI ports [30, 33] and on-chip accelerator-to-accelerator streaming

using the AXIS streaming ports [30, 33]. Moreover, we mainly focus

on the performance under consecutive data access patterns, which

are the most efficient and themost common access pattern for FPGA

accelerators. The random access pattern is considered as a special

case where the consecutive data access size is just one element.

The platforms evaluated in this study are the PCIe-based Xilinx

Alveo U200 and U280 datacenter FPGA boards [31, 32]. The U200

FPGA is similar to the AWS F1 instance setup [3], which features

three separate FPGA dies and four 16GB off-chip DDR4-2400MT

DRAMS. The U280 FPGA features not only three separate FPGA

dies and two 16GB off-chip DDR4-2400MT DRAMs, but also two

4GB HBM2 stacks that have a total of 32 256MB HBM banks.

3 MICROBENCHMARK DESIGN
3.1 Key Factors on Memory Performance
We have identified the following set of key factors that could affect

the memory system performance.

1. Number of concurrent ports, i.e., the number of concurrent AXI

(memory-mapped) or AXIS (streaming) ports.

2. Port width, i.e., the bit-width of each AXI or AXIS port.

3. Port𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, i.e., the maximum burst access length

(in terms of number of elements) for each AXI port. The derived

port𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 =𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ * port width.
4. Consecutive data access size, i.e., the size of consecutive data

accesses for each AXI or AXIS port.

In addition to the above four key factors, we also explored

one more factor: the 𝑛𝑢𝑚_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑠𝑠 of an AXI port,

which specifies the number of outstanding memory access requests

that an AXI port can hold before stalling the system. However,

we do not include it in the key factor list, because the default

𝑛𝑢𝑚_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑠𝑠 (16) that Vivado HLS [34] uses already

achieves the best memory performance (results omitted).

3.2 Design Challenges and Solutions
Our goal is to figure out how those identified key factors quanti-

tatively impact the bandwidth, latency, and resource usage of off-

chip memory access by accelerators and accelerator-to-accelerator

streaming, and provide insights for software programmers. Unfor-

tunately, HLS report [34] always assumes that an accelerator can

achieve the theoretical peak bandwidth at a given port width and

ignores other factors. For register-transfer level (RTL) hardware em-

ulation [33], it does not accurately model the off-chip memory sys-

tem. Therefore, we decide to develop a set of microbenchmarks to

run on real hardware for the evaluation. For each microbenchmark,

we develop the FPGA kernel code using Vivado HLS-C/C++ [34]

and the CPU host code using OpenCL in the Xilinx Vitis tool [33].

To ensure accuracy, we limit our microbenchmarks to only use the

most primitive operations, i.e., off-chip memory read or write, and

streaming read or write. However, several design challenges arise.

1. The very short execution time of the microbenchmark kernel

on the FPGA is very difficult to be accurately measured from

the host CPU. We solve this issue by repeating the execution of

the microbenchmark code a number of times within the FPGA

kernel and then getting the average execution time.

2. The highly repetitive accesses of simple memory operations in

the microbenchmark kernel are treated as dead code and can

be optimized away by Vivado HLS. We fix this by adding the

volatile qualifier for those involved variables.

1 void krnl_ubench_RD (volatile ap_int<W>* in0, volatile ap_int<W>* in1,
2 const int data_length) {
3 #pragma HLS INTERFACE m_axi port=in0 bundle=gmem0 max_read_burst_length=16...
4 #pragma HLS INTERFACE m_axi port=in1 bundle=gmem1 max_read_burst_length=16...
5 ...
6 volatile ap_int<W> temp_data_0, temp_data_1;
7

8 #pragma HLS DATAFLOW
9 //Repeat NUM_ITERATIONS times: read data_length number of consecutive data
10 RD_in_0: for (int i = 0; i < NUM_ITERATIONS: ++i)
11 for (int j = 0; j < data_length: ++j)
12 #pragama HLS PIPELINE II=1
13 temp_data_0 = in0[j];
14 RD_in_1: for (int i = 0; i < NUM_ITERATIONS: ++i)
15 for (int j = 0; j < data_length: ++j)
16 #pragama HLS PIPELINE II=1
17 temp_data_1 = in1[j];
18 }

Listing 1: Sample HLS code to characterize the off-chip
memory read bandwidth with two concurrent AXI ports

3. By default, Vivado HLS schedules multiple loops, even indepen-

dent loops, to execute in sequential. This prevents the testing of

the impact by multiple concurrent ports distributed across mul-

tiple loops. To solve this issue, we use the DATAFLOW pragma

to schedule multiple independent loops to run in parallel.

3.3 Microbenchmarks for Bandwidth Test
In our microbenchmark suite, we evaluate two types of data commu-

nication bandwidths. One is the off-chip memory access bandwidth

used by the accelerators, using the memory-mapped AXI ports [30].

The other is the on-chip accelerator-to-accelerator streaming band-

width using the AXIS streaming ports [30]; this is a relatively new

feature added in Xilinx Vitis 2019.2 [33].

3.3.1 Off-Chip Memory Bandwidth with Multiple AXI Ports. List 1
presents a sample HLS code to characterize the relation between the

off-chip memory read bandwidth and the aforementioned factors.

1. Line 1: the input arrays in0 and in1 use the ap_int<W> type in
HLS [34], where W defines the AXI port width and needs to be

statically set at compile time. The volatile keyword ensures that

the memory accesses are not optimized away by Vivado HLS.

2. Line 2: the input variable data_length specifies the number of

consecutive array elements accessed from the off-chip memory.

The consecutive data access size is 𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ ∗𝑊 /8 bytes.
3. Lines 3-4: the unique bundle names such as gmem0 and gmem1

indicate that the input arrays in0 and in1 use two physical AXI

ports. Each AXI port makes independent access requests to the

off-chip memory. The parameter𝑚𝑎𝑥_𝑟𝑒𝑎𝑑_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16

specifies that the maximum number of elements during burst

access is 16, i.e., port𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16.
4. Line 6: dummy variables are declared to store the data read from

off-chip memory. The volatile keyword is also needed.

5. Line 8: the DATAFLOW pragma is used to schedule the RD_in_0
loop and RD_in_1 loop to execute in parallel. Therefore, these

two loops will concurrently access two AXI ports.

6. Lines 10-13: the inner loop keeps reading a 𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ size

of consecutive array elements from the AXI port gmem0 in a

pipelined fashion, with an initiation interval (II) of 1. The outer

loop repeats this for NUM_ITERATIONS times to get accurate

execution time. Lines 14-17 access the second concurrent port.

1 #pragma HLS INTERFACE m_axi port=in0 bundle=gmem0...
2 #pragma HLS INTERFACE m_axi port=in1 bundle=gmem0...
3 ...
4 // Option 1 - array-wise access switching
5 for (int j = 0; j < data_length: ++j)
6 #pragama HLS PIPELINE II=1
7 temp_data_0 = in0[j];
8 for (int j = 0; j < data_length: ++j)
9 #pragama HLS PIPELINE II=1
10 temp_data_1 = in1[j];
11

12 // Option 2 - element-wise access switching
13 for (int j = 0; j < data_length: ++j)
14 #pragama HLS PIPELINE II=1
15 temp_data_0 = in0[j];
16 temp_data_1 = in1[j];

Listing 2: Sample HLS code to measure the off-chip read
bandwidth of two input arrays sharing a single AXI port

3.3.2 Off-Chip Memory Bandwidth with Multiple Arguments Shar-
ing a Single AXI Port. List 2 presents a sample HLS code to char-

acterize the off-chip memory bandwidth for reading multiple data

arrays using a shared AXI port, under the aforementioned factors.

1. Lines 1-2: the same bundle name gmem0 indicates that both

input arrays in0 and in1 are read from a shared AXI port.

2. Option 1, lines 4-10: the first j loop reads the entire array in0, and
then the second j loop reads the entire in1. Note since in0 and in1
share the same AXI port, they cannot be accessed concurrently.

3. Option 2, lines 12-16: for each iteration of the j loop, it reads one

element of arrays in0 and in1 in an interleaved fashion. Option

2 is a widely used coding style for software programmers.

3.3.3 Accelerator-to-Accelerator Streaming Bandwidth with AXIS
Ports. To characterize the bandwidth for the inter-accelerator

streaming connection, two kernels are used to emulate a stream

write and read pair. The streaming variables are of type hls::stream,

and each streaming data item is defined using the ap_axiu<W,0,0,0>

type in HLS [34], where W specifies the bit-width of the AXIS

streaming port. We omit its code due to space constraints. Similarly,

the number of AXIS ports, data_length, and port widthW can be

adjusted to test different configurations as described in Section 3.3.1.

3.4 Microbenchmarks for Latency Test
In the latency test, we aim to measure the performance of the

random access latency of the off-chip memory. To access the off-

chip data in a random order, a random index array is generated in

the CPU host code and then stored on the FPGA on-chip BRAM.

Using this on-chip random index array, the input array can be

accessed from the off-chip memory in a random order. Moreover,

to avoid multiple memory accesses overlapping their latency with

each other, we set 𝑛𝑢𝑚_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑠𝑠 = 1.

4 RESULTS AND INSIGHTS
4.1 Experimental Setup
As discussed in Section 2, the platforms we evaluate are the Xil-

inx Alveo U200 and U280 datacenter FPGA boards [31, 32]. We

build our HLS C/C++ based microbenchmarks using Xilinx Vitis

2019.2 [33]. The FPGA kernels of all these microbenchmarks run at

300MHz. The DRAM results and accelerator-to-accelerator stream-

ing results apply to both Alveo U200 and U280 FPGAs, and the

resource utilization is based on Alveo U200 FPGA.

32bit 64bit 128bit 256bit 512bit 1024bit

13.18GB/sTheor. BW: 14.4GB/s

0

4

8

12

16

1 8 64 512

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (KB)

13.17GB/sTheor. BW: 14.4GB/s

0

4

8

12

16

1 8 64 512

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (KB)

17.94GB/sTheor. BW: 19.2GB/s

0

6

12

18

24

1 8 64 512

B
an

d
w

id
th

(G
B

/s
)

Data Size (KB)

16.11 GB/sTheor. BW: 19.2GB/s

0

6

12

18

24

1 8 64 512

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (KB)

(a) DRAM READ (b) DRAM WRITE (c) HBM READ (d) HBM WRITE

Figure 1: Bandwidth for accessing a single DDR4 and HBM bank with a single AXI port. Note the x-axis is plotted in 𝑙𝑜𝑔2 scale.

0

0.2

0.4

0.6

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) 32bit 64bit 128bit

256bit 512bit

0.0

1.0

2.0

3.0

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) burstLength=16

burstLength=32

burstLength=64

burstLength=128

burstLength=256

0

4

8

12

16

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
)

(a) FPGA platform shell (b) Kernel with different port widths (c) Kernel with different max_burst_length

Figure 2: Resource usage of a single AXI port design with different port widths andmax_burst_lengths (port width = 512 bits).

4.2 Bandwidth and Resource Utilization for
Single Argument AXI Port Off-Chip Access

4.2.1 Bandwidth Results. For a single AXI port (and sin-

gle argument) with the default max_burst_length (16) and

num_outstanding_access (16), the effective DRAM and HBM bank

read and write bandwidths under different port widths and con-

secutive data access sizes are shown in Figure 1. A similar trend is

observed from both off-chip memory read and write.

1. Both bandwidths increase almost linearly as the port width

increases and flattens at 512-bit width. For DRAM, this is because

the physical bus width of a DDR4 bank used in this paper is 512

bits. For HBM, the physical bus width of an HBM2 bank used in

this paper is 256 bits, and its memory controller runs at 450MHz.

Although the linear bandwidth scaling of an HBM bank stops

at 256-bit, the 512-bit width still achieves the highest effective

bandwidth because our microbenchmark runs at 300MHz.

2. Both bandwidths increase as the consecutive data access size

increases. The bandwidths flatten at around 128KB for DDR4

read andwrite andHBM read, and at 32KB for HBMwrite. This is

because multiple sources of off-chip memory access overhead—

such as the activation and precharge a DRAM row [7], page

miss and address translation overhead—can be better amortized

with larger consecutive data access sizes.

3. Although the theoretical peak bandwidth of the DDR4 used

in this paper is 19.2GB/s, the effective peak bandwidths are

17.94GB/s for read and 16.11GB/s for write for a single AXI

port. Further, they can only be achieved when the port width is

512-bit or above and the consecutive data access size is no less

than 128KB. For the HBM2 used in this paper, the theoretical

peak bandwidth is 14.4GB/s, yet the effective peak bandwidths

are around 13.2GB/s for both read and write for a single AXI

port. This is slightly lower than the reported 13.27GB/s HBM

bandwidth in [28] where RTL microbenchmark design is used.

4. For a single AXI port, increasing the max_burst_length and/or

num_outstanding_access parameters beyond the default values

(16) does not improve the bandwidths for DDR4 nor HBM2. We

omit the results due to space constraints.

4.2.2 Resource Usage. Figure 2 presents the resource usage of LUT,
FF, and BRAM for the FPGA platform shell and the AXI port, under

different port widths and max_burst_length values. Note that the

consecutive data access size is a software parameter and does not

change the hardware implementation. Throughout this paper, we

report the post place and routing resource utilization.

1. Shown in Figure 2(a), the platform shell resource usage remains

unchanged as there is no additional AXI port connection.

2. Shown in Figure 2(b), as the AXI port width increases, the LUT

and FF resources have a steady small percentage increase while

the BRAM usage grows linearly. The total resource increase is

less than 0.3% of the entire device across all three resources.

3. Shown in Figure 2(c) where it uses 512-bit port width, as the

max_burst_length increases, the LUT and FF resources remain

unchanged, but the BRAM usage grows linearly. The reason is

that the AXI port automatically buffers some data that it reads

from off-chip DRAM in on-chip FIFO or BRAM [30]. This buffer

size can be calculated using the following equation [34]:

𝐴𝑋𝐼_𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒 = 𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ ∗𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ
∗ num_outstanding_access (1)

This equation explains the linear increase of BRAM resource in

Figure 2(b) and (c). For the 32-bit case in Figure 2(b), it uses

FIFO instead of BRAM due to its small buffer size. For the

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16 case in Figure 2(c), each BRAM bank is

only occupied by half, and that is why it uses the same number

of BRAMs as the𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 32 case.

4.3 Bandwidth and Resource Utilization for
Multiple AXI Ports Off-Chip Access

4.3.1 Bandwidths for Multiple AXI Ports in Single DRAM. We first

evaluate the bandwidth of multiple concurrent AXI ports accessing

a single DRAMwhere the aggregated port width is 512 bits (the best

4

8

12

16

20

1 16 256 4096

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (KB)

4

8

12

16

20

1 16 256 4096

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (KB)

2ports_256bit4ports_128bit8ports_64bit

17.03GB/s

18.01GB/s

8

10

12

14

16

18

20

1 16 256 4096

B
an

d
w

id
th

 (
G

B
/s

)

Data size (KB)

13.10GB/s

16.56GB/s

8

10

12

14

16

18

20

1 16 256 4096

B
an

d
w

id
th

 (
G

B
/s

)

Data size (KB)

8kb - 2ports_256bit8kb - 4ports_128bit8kb - 8ports_64bit
16kb - 2ports_256bit16kb - 4ports_128bit16kb - 8ports_64bit

(a) READ using default
max_burst_length = 16

(b) READ using maximum
max_burst_length = 256

(c) READ using max burst sizes:
8kb and 16kb

(d) WRITE using max burst sizes:
8kb and 16kb

Figure 3: Bandwidth for accessing a single DDR4 DRAM with multiple AXI ports and a total port width of 512-bit.

(a) DRAM READ (b) DRAM WRITE (c) HBM READ (d) HBM WRITE

64.6GB/s

0

20

40

60

80

1 8 64 512

Ba
nd

w
id

th
 (G

B/
s)

Data Size (KB)

1DDR 2DDR
3DDR 4DDR71.7GB/s

0

20

40

60

80

1 8 64 512

Ba
nd

w
id

th
 (G

B/
s)

Data Size (KB)

1DDR 2DDR
3DDR 4DDR 421.6GB/s

0

100

200

300

400

500

600

1 8 64 512

Ba
nd

w
id

th
 (G

B/
s)

Data Size (KB)

1HBM 2HBM
4HBM 8HBM
16HBM 32HBM

421.8GB/s

0

100

200

300

400

500

600

1 8 64 512

Ba
nd

w
id

th
 (G

B/
s)

Data Size (KB)

1HBM 2HBM
4HBM 8HBM
16HBM 32HBM

Figure 4: Bandwidth for accessing multiple DDR4 and HBM banks using AXI ports. Note the x-axis is plotted in 𝑙𝑜𝑔2 scale.

port width). Figure 3 presents the results for 2 ports each 256-bit

wide, 4 ports each 128-bit wide, and 8-ports each 64-bit wide.

1. Figure 3(a) presents the bandwidth with𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16

(HLS default). As the consecutive data access size increases, the

bandwidths for 2 ports, 4 ports, and 8 ports get an unstable

degradation. This is mainly because the DRAM row buffer for

one AXI port access will be replaced by another AXI port access

before it is fully utilized. Note there is no contention in the single

port case. The more ports, the more contention on the DRAM

row buffer, the more bandwidth degradation. The degraded

bandwidth can be up to 3x lower than the expected bandwidth.

2. Figure 3(b) presents the bandwidth with𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ =

256 (maximum number supported in HLS). The bandwidths for

2 ports, 4 ports, and 8 ports are almost identical to the single 512-

bit port case, because they can fully utilize the DRAM row buffer

locality (explained below using𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒). However, ac-

cording to Equation 1, a design with𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 256

can significantly overuse the on-chip BRAM resource.

3. To find out the optimal𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ that achieves the best

bandwidth and uses least amount of BRAM, we test a full set

of configurations with different 𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ𝑠 and port

widths. We find this is actually determined by the derived factor

port𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 (=𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ * port width).
Figure 3(c) and (d) present the effective read and write band-

widths for 2 ports, 4 ports, and 8 ports under 8Kb and 16Kb

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒𝑠 (we omit other𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒𝑠 to make the

figuresmore clear to read). Note the effective peak read andwrite

bandwidths for multiple AXI ports (18.01GB/s and 16.56GB/s)

are slightly higher than those for a single AXI port.

Based on the Figure 3(c) and (d), we conclude that 16Kb is the best

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 . The reason is that the DRAM row buffer size is

512B and the page size is 4KB. A𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 of 16Kb (2KB)

is large enough to fully utilize the DRAM row buffer locality

and amortize the page miss and address translation overhead.

We also measure other combinations with different number of

ports and different port widths. Due to space constraints, we omit

the detailed results. Here is a summary of our findings.

1. The maximum number of AXI ports that can be connected to

each single DRAM is 15.

2. To achieve the best stable bandwidth, the 𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒

for all AXI ports should be set as 16Kb by setting the

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ. For AXI ports whose port widths are un-

der 64 bits, i.e., where 16Kb𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 cannot be achieved,

the maximum𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 256 should be used.

3. As long as the best𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 = 16𝐾𝑏 is used, the total

bandwidth scales linearly with the aggregated port width and

flattens at 512-bit width. It also increases as the consecutive data

access size increases and is about to flatten at 128KB size.

4.3.2 Bandwidths for Multiple Off-Chip Memory Banks. Figure 4 a)
and b) present the effective off-chip bandwidths on the Alveo U200

FPGA with multiple DRAMs, each of which has a single AXI port

with 512-bit width. The effective DRAM bandwidth scales linearly

with the number of memory banks. The bandwidths for the four

DDR4s on U200 peak at 71.7GB/s and 64.6GB/s for read and write.

Figure 4 c) and d) present the effective off-chip bandwidths on

the Alveo U280 FPGA with multiple HBM banks, where each HBM

bank uses a single AXI port with 512-bit port width at 300MHz. The

effective HBM bandwidth also scales linearly with the number of

memory banks. The bandwidths for the 32 HBM banks on the Alveo

U280 peak at around 422GB/s for both read and write. Note that

the maximum number of AXI ports supported for HBM is also 32.

Therefore, a typical usage is to connect one AXI port to one HBM

bank to maximize the bandwidth utilization, instead of connecting

multiple AXI ports to a single HBM bank (we omit this result).

6

12

18

24

30

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
)

1port 2ports 4ports

8ports 15ports

(a) FPGA platform shell

0

4

8

12

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) 1port_512bit 2ports_512bit

4ports_512bit 8ports_512bit
15ports_512bit

(b) Kernel with different # of ports
Figure 5: U200 resource usage formultiple DRAMAXI ports.

(a) FPGA platform shell (b) Kernel with different # of ports

0
4
8
12
16
20
24
28

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) 1port 2ports 4ports

8ports 16ports 32ports

0
3
6
9
12
15
18

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) 1port_512bit 2ports_512bit

4ports_512bit 8ports_512bit
16ports_512bit 32ports_512bit

Figure 6: U280 resource usage for multiple HBM AXI ports.

(a) Input-wise Access Switching (b) Element-wise Access Switching

0

1

2

3

4

5

6

0.25 2 16 128 1024

Ba
nd

w
id

th
 (G

B/
s)

Data Size (KB)

1input 2 inputs
4 inputs 8 inputs
16 inputs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.25 2 16 128 1024

Ba
nd

w
id

th
 (G

B/
s)

Data Size (KB)

2 inputs 4 inputs
8 inputs 16 inputs

Figure 7: Read bandwidth for accessing multiple input data
arrays via a single shared 128-bit AXI port.

4.3.3 Resource Usage for Multiple AXI Ports in Single DRAM. As
shown in Figure 5, when the number of AXI ports connected to

the DRAM increases (the maximum is 15 for a single DRAM), the

resource usage increases in both the U200 FPGA platform shell

and the kernel design. Between a single-port design and a 15-port

design, the FPGA platform shell requires a device usage increase

of 4% in LUT, 3% in FF, and 11% in BRAM. For the kernel design,

the resource usage increases linearly with the number of ports.

4.3.4 Resource Usage for Multiple AXI Ports Accessing Multiple
HBM Banks. Figure 6 presents the resource usage for the U280

FPGA platform shell and kernel designs, where each AXI port is

connected to a separate HBM bank. For the FPGA platform shell,

the usage in LUT and FF scale linearly at 0.25% and 0.30% per AXI

port. Nevertheless, the BRAM usage does not vary due to hardened

HBM memory interconnects for the U280 FPGA. For the kernel

design, the resource usage has a similar trend as the DRAM kernels

in Figure 5(b), which increases linearly with the number of ports.

4.4 Off-Chip Bandwidth for Multiple
Arguments Sharing a Single AXI Port

Figure 7 presents the read bandwidth when accessing multiple input

data arrays on the DDR4 DRAM through a shared 128-bit AXI port.

1. Shown in Figure 7(a), the read bandwidth for accessing each

input data array consecutively in separate loops (Option 1 in

Section 3.3.2) follows the same trend as the single AXI port

bandwidth (Section 4.2). This bandwidth does not vary as the

number of input data array increases, because the consecutive

(a) Kernel with different port width

38.28GB/s

0

20

40

10 160 2560 40960

Ba
nd

w
id

th
 (G

B/
s)

Data Size (MB)

32bit 64bit 128bit

256bit 512bit 1024bit

(b) Kernel with different # of ports

612.84GB/s

0

125

250

375

500

625

160 5120 163840

Ba
nd

w
id

th
 (G

B/
s)

Data Size (MB)

16x32bit 16x256bit 16x512bit 16x1024bit

32x32bit 32x256bit 32x512bit 32x1024bit

Figure 8: Bandwidth for accessing multiple AXIS ports.

0

0.01

0.02

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) 32bit

64bit
128bit
256bit
512bit
1024bit

(a) Single port kernel with
different port widths

0

0.05

0.1

0.15

0.2

0.25

LUT FF BRAM

De
vi

ce
 U

sa
ge

 (%
) 1port

2ports
4ports
8ports
16ports

(b) Multiple port kernel

Figure 9: Resource usage of a multiple AXIS ports design.

memory burst access for each input array still retains an efficient

utilization of the DRAM row buffer. Note that the bandwidth

degradation issue for multiple AXI ports sharing a single DRAM

in Section 4.3.1 does not apply here because multiple arguments

are accessed in a sequential and consecutive way via a single

AXI port. So we just need to use the default𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ.

2. Shown in Figure 7(b), the read bandwidth for accessing multiple

input data array elements in an interleaved fashion in a single

loop (Option 2 in Section 3.3.2) is less than 10% of that for Option

1. This is due to the DRAM row buffer thrashing from frequent

input array access switching. The bandwidth also decreases

slightly as the number of input array and the array size increase.

A software programmer needs to pay special attention to avoid

this common coding style and choose Option 1 instead.

4.5 Bandwidth and Resource Utilization for
Accelerator-to-Accelerator Streaming Ports

4.5.1 Bandwidth Results. Figure 8 presents the accelerator-to-

accelerator streaming bandwidths.

1. Shown in Figure 8(a), the effective inter-kernel streaming band-

width scales linearly with the AXIS port width all the way to

the maximum 1024-bit width that HLS supports.

2. Shown in Figure 8(a), the effective inter-kernel streaming band-

width increases as the streaming data size increases, and flattens

at around 2GB size (38.28GB/s for a single AXIS port).

3. Shown in Figure 8(b), the effective inter-kernel streaming band-

width scales linearly as the number of AXIS ports increases.

It flattens until 16 AXIS ports are used, no matter which port

width is used. The effective peak streaming bandwidth is about

612.84GB/s for 16 of 1024-bit wide AXIS ports.

4.5.2 Resource Usage. Shown in Figure 9(a), a single AXIS port

has a fixed tiny resource usage regardless of its port width: it uses

0.02% of LUT and 0.01% of FF. The resource usage scales linearly

as the number of AXIS ports increases, as shown in Figure 9(b).

Therefore, accelerator-to-accelerator streaming is very efficient.

Table 1: Off-chip memory access latency at 300MHz

DDR4 latency 110ns HBM2 latency 108ns

4.6 Latency for Off-Chip Access
Table 1 summarizes the latencies for randomly accessing 4 bytes

of data from the off-chip DDR4 and HBM2 banks. They are nearly

the same: 110ns for DDR4 access and 108ns for HBM access. Our

latency results represent the page-hit performance as presented

in [28], because our microbenchmark uses a small data array size

and repeat the test for many times. Our measured HBM latency is

similar to that measured in [28] because of the efficient hardened

HBMmemory interconnect. However, our measured DRAM latency

is higher than that measured in [28] (73.3ns) due to the overhead

from the HLS-generated memory interconnect IP.

5 CASE STUDY 1: K-NEAREST NEIGHBOR
To demonstrate how to leverage our results and insights in de-

signing an efficient HLS-based hardware accelerator on datacenter

FPGAs, we conduct a case study on a K-nearest neighbors (KNN)

accelerator in HLS-C/C++. The KNN algorithm [2, 8] is widely used

in many applications such as similarity searching, classification,

and database query search [17, 26, 35].

5.1 KNN Algorithm and Accelerator Design
5.1.1 KNN Algorithm. We use the software code of KNN from the

widely used benchmark suite Rodinia [8]. Its pseudo code with some

hardware-friendly code transformations is shown in Algorithm 1.

In function Compute_Distances (lines 4-11), for every data point

in the search space, its Euclidean distance to the given input query

data point is calculated. Each calculation is independent.

In function Sort_Top_K_Neighbors (lines 12-28), the top K near-

est neighbors to the input query data point are sorted out based

on the distances: 𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝐾] stores the smallest distance,

and 𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [1] stores the K-th smallest distance. Note that

both the top K distances and their associated data point IDs have

to be sorted and returned. To enable fine-grained parallelism, in-

side each loop iteration i (line 16), we split the compare-and-swap

loop into two j loops that increment j by a step of two. The first j

loop compares-and-swaps elements to their next neighbor (lines

20-23) and the second j loop compares-and-swaps elements to their

previous neighbor (lines 25-28). As a result, both loops can be fully

unrolled and parallelized on FPGA. After the first K iterations of

the i loop, 𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [1 : 𝐾] swaps in the first K distances. For

any loop iteration 𝑖 > 𝐾 (line 16), it compares 𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [0]
(i.e., incoming 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑅𝑒𝑠𝑢𝑙𝑡 [𝑖]) and 𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [1 : 𝐾] (i.e.,
current top K distances) so that the biggest distance is swapped to

𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [0]. That is, 𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [1 : 𝐾] always keeps
the K smallest distances. This is proved in our CHIP-KNN pa-

per [20]. The final extra K iterations (line 16) make sure the final

𝑡𝑜𝑝_𝐾_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [1 : 𝐾] are sorted from biggest to smallest.

5.1.2 Baseline Accelerator Design. To provide a fair comparison, we

first apply a series of common HLS optimization techniques [12, 13],

which is briefly summarized as below. Please refer to our more

generalized CHIP-KNN paper [20] for more details.

Algorithm 1 Pseudo code for HLS-C/C++ accelerated KNN

1: function Load_Local_Buffer

2: local_searchSpace[# buffered points][# features]

3: memcpy (local_searchSpace← a portion of searchSpace from off-

chip memory) //pipeline II=1
4: function Compute_Distances

5: inputPoint [# features]

6: local_searchSpace[# buffered points][# features]

7: distanceResult[# buffered points] //Initialized as zeros

8: for i in # of buffered points do //pipeline II=1
9: for j in # of features do //fully unrolled
10: feature_delta = inputPoint[j] - local_searchSpace[i][j]

11: distanceResult[i] += feature_delta * feature_delta

12: function Sort_Top_K_Neighbors

13: distanceResult[(# buffered points) + K] //Extra K dummy distances

initialized as MAX_DISTANCE

14: top_K_distance[K+2] //Initialized as MAX_DISTANCE

15: top_K_id[K+2] //Initialized as non-valid IDs

16: for i in range 0 to (# buffered points) + K do //pipeline II=2
17: top_K_distance[0] = distanceResult[i]

18: top_K_id[0] = start_id + i

19: //Parallel compare-and-swap with items ahead
20: for j in 1 to K-1; j+=2 do //fully unrolled
21: if top_K_distance[j] < top_K_distance[j+1] then
22: swap (top_K_distance[j], top_K_distance[j+1])

23: swap (top_K_id[j], top_K_id[j+1])

24: //Parallel compare-and-swap with items behind
25: for j in 1 to K; j+=2 do //fully unrolled
26: if top_K_distance[j-1] < top_K_distance[j] then
27: swap (top_K_distance[j], top_K_distance[j-1])

28: swap (top_K_id[j], top_K_id[j-1])

1. Buffer Tiling. As shown in the function Load_Local_Buffer of
Algorithm 1 (lines 1-3), to improve the memory access perfor-

mance, a portion of the search space points are read from off-

chip memory through burst access and buffered on chip before

running the Compute_Distances and Sort_Top_K_Neighbors.
2. Customized Pipeline. First, the memcpy in Load_Local_Buffer

is pipelined with initiation interval (II) of 1 (line 3). Second,

the i loop for buffered points in Compute_Distances (line 8)

is piplelined with II of 1. As a result, its inner j loop (line

9) is fully unrolled. Lastly, the i loop for buffered points in

Sort_Top_K_Neighbors (line 16) is piplelined with II of 2. As

a result, its inner j loops (lines 20 and 25) are fully unrolled.

3. Ping-Pong Buffer. We use double buffers to allow the

Load_Local_Buffer, Compute_Distances, Sort_Top_K_Neighbors
functions to run in a coarse-grained pipeline. We call these three

functions together as a single processing element (PE). Each PE

uses one AXI read port. Note that with a single PE, the top_K

results are global across all tiled buffers it processes.

4. PE Duplication. We also duplicate the above PE to enable coarse-

grained parallelism. Note this also duplicates the number of PE

ports, leading to multi-ports connected to a DRAM. To get the

final top_K results, we add a global merger to merge #PE local

copies of sorted top_K results from each PE. To enable efficient

data communication between the global merger and PEs, we use

the accelerator-to-accelerator streaming connection. This global

merger uses one AXI port to write the results to the DRAM and

only needs to execute once after all PEs finish the processing of

Table 2: Four KNN design points with different memory configurations, using one copy of each function inside each PE. Per-
formance speedup, frequency, and resource usage are measured using a single SLR and a single DRAM on Alveo U200 FPGA.

design

choices

buffer

size

port

width

max_burst

_length

#PEs

#ports

resource utilization in SLR 0 (%) freq

(MHz)

speedup

LUT FF BRAM URAM DSP

baseline 1KB 32-bit 16 14 36 27 46 6 9 300 1x

aggressive 128KB 512-bit 32 11 35 30 98 55 7 300 2.6x

optimal 2KB 64-bit 256 14 42 29 60 17.5 9 300 3.5x

suboptimal 2KB 64-bit 16 14 37 27 47 17.5 9 300 1.2x

all tiled buffers. Its execution time is negligible. Therefore, it is

included in the final execution time but not in our analysis.

5.2 Design Exploration with Our Insights
5.2.1 KNN Setup. In this paper, we use the same setup as the KNN

setup used in the Rodinia benchmark suite [8]. Each data point

uses a two-dimensional feature vector, and each feature uses 32-bit

floating-point type (i.e., 8 bytes per data point). The distance we

use is Euclidean distance, but the square root operation (𝑠𝑞𝑟𝑡) is

skipped in the accelerator to save hardware resource. The total

number of data points in the search space we use is 4,194,304 (i.e.,

4M points). We find the top 10 (i.e., 𝐾 = 10) nearest neighbors.

5.2.2 Performance Model with Our Insights. To guide our design
space exploration, we build a performance model to calculate

the latency of each function: the optimal design should balance

the latencies between Load_Local_Buffer, Compute_Distances, and
Sort_Top_K_Neighbors which execute in a coarse-grained pipeline.

Since each function is pipelined, its latency can be calculated as:

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = (𝑝𝑖𝑝𝑒_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1) ∗ 𝐼 𝐼 + 𝑝𝑖𝑝𝑒_𝑑𝑒𝑝𝑡ℎ (2)

where 𝑝𝑖𝑝𝑒_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the number of loop iterations or the num-

ber of array elements in the𝑚𝑒𝑚𝑐𝑝𝑦 operation, 𝐼 𝐼 and 𝑝𝑖𝑝𝑒_𝑑𝑒𝑝𝑡ℎ

can be read from HLS report. However, when reporting the 𝐼 𝐼 and

𝑝𝑖𝑝𝑒_𝑑𝑒𝑝𝑡ℎ for off-chip memory accesses, Vivado HLS always as-

sumes a theoretical peak bandwidth for a given port width (i.e.,

19.2𝐺𝐵/𝑠 ∗ 𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ/512), which gives inaccurate results. To

correct this, we scale the load latency of Load_Local_Buffer as:

𝑙𝑜𝑎𝑑𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑙𝑜𝑎𝑑𝐻𝐿𝑆 ∗ 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙_𝐵𝑊 /𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒_𝐵𝑊 (3)

where the effective bandwidth is a function of #𝑝𝑜𝑟𝑡𝑠 , 𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ,

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, and 𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒 (consecutive data access size in a

tiled buffer), as we have characterized in Section 4.

Finally, we also guide the design exploration based on resource

usage, especially for how many PEs can be duplicated. We use

Equation 1 to estimate the on-chip memory usage by the AXI ports.

5.2.3 Illustration without Optimizing Function Ratios. First, we start
exploring the KNN design with one copy of each function (i.e., par-

allel ratio 1:1:1) inside each PE, as presented in Section 5.1. Note this

is an under-optimized version of KNN, since Sort_Top_K_Neighbors
takes roughly two times more latency than Compute_Distances,
according to Equation 2. However, this mimics a practical design

where a balanced computing is not always possible (e.g., due to

data dependency) and illustrates the usefulness of our insights. As

summarized in Table 2, we compare four memory access configura-

tions of this KNN design. In this study, we constrain our designs

with a single SLR (Super Long Region, i.e., one FPGA die) and a

single DRAM of the Alveo U200 board.

1. Baseline version. The baseline version uses a buffer size of

1KB (i.e., consecutive data access size), 32-bit port width,

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16, and 14 ports (14 PEs), which leads to

a significantly underutilized bandwidth according to our char-

acterization. Only 14 PEs can be duplicated because a single

DRAM only allows up to 15 AXI ports and the global merger al-

ready uses 1 AXI port. It uses the least amount of resource and is

the slowest. Its performance is limited by the Load_Local_Buffer
function that underutilizes the bandwidth.

2. Aggressive version. For the aggressive, suboptimal and optimal
versions, we apply the memory coalescing optimization in [12,

13] to widen the AXI port width. The aggressive design uses the

best bandwidth configuration even for a single PE: a buffer size

of 128KB, 512-bit port width, and𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 32 (i.e.,

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 = 16𝐾𝑏). This shifts its performance bottleneck

to the Sort_Top_K_Neighbors function. However, it also uses a
lot more on-chip memory due to the large size of partitioned

buffers. As a result, it can only duplicate 11 PEs, which limits

its overall performance speedup over the baseline to be 2.6x.

3. Optimal version. The optimal design uses a more balanced con-

figuration: a buffer size of 2KB (to save BRAM and URAM

usage), 64-bit port width, and 𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 256

(i.e., 𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 = 16𝐾𝑏). This allows us to duplicate

14 PEs and also shifts the performance bottleneck to the

Sort_Top_K_Neighbors function. Compared to the baseline and

aggressive designs, it achieves 3.5x and 35% speedups.

4. Suboptimal version. Finally, to demonstrate the impact of

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, we also include the suboptimal design,

where the only difference to the optimal design is that it uses

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16 (HLS default). As a result, it gets a 2.9x

slowdown compared to the optimal design.

5.2.4 Final Design with Balanced Function Ratios. Finally, accord-
ing to our performance model in Section 5.2.2, we choose the opti-

mal bandwidth configurations and adjust the parallel ratio between

the three functions to balance their latencies. We have built multi-

ple optimal design points to use all three SLRs and four DRAMs of

the Alveo U200 board, but only two of them passed the timing. As

presented in Table 3, the first is the 4-PE-512-bit design at 229MHz:

each PE uses 512-bit port width with a parallel ratio of 1:8:24, and

each PE connects to one DRAM. The second is the 8-PE-256-bit
design at 262MHz: each PE uses 256-bit port width with a paral-

lel ratio of 1:4:12, and every two PEs connect to one DRAM. In

both designs, each PE uses an optimal buffer size of 128KB and

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 = 16𝐾𝑏. Moreover, in both designs, the pipeline II

of the loop in Sort_Top_K_Neighbors increases to three due to the in-
creased complexity for HLS scheduling. Inside each PE, since there

are 24 or 12 parallel copies of Sort_Top_K_Neighbors, we also add

Table 3: Time and resource usage of final KNN design
design

choices

parallel

ratio

device resource utilization (%) freq

(MHz)

speedup

LUT FF BRAM URAM DSP

4-PE-512-bit 1:8:24 46 31 66 7 7 229 5.2x

8-PE-256-bit 1:4:12 46 32 48 7 7 262 5.6x

24-core CPU dual-socket Intel Xeon Silver 4214 CPU 1x

a local merger to merge the top_K results. This merger leads to a

frequency drop in both designs. Table 3 summarizes their execution

time, frequency and resource usage.

We use the 8-PE-256-bit design as our final KNN design. It bal-

ances all three functions’ latencies and fully utilizes the effective

bandwidths of all DRAMs of the Alveo U200 board, which achieves

the theoretical peak performance on the Alveo U200 board. Com-

pared to a 24-thread software implementation running on dual-

socket Intel Xeon CPU server, it achieves about 5.6x speedup.

6 CASE STUDY 2: SPMV
To further demonstrate our insights’ usefulness, we conduct an-

other case study on a sparse matrix-vector multiplication (SpMV)

accelerator in HLS-C/C++. The SpMV computational kernel [6, 25]

is widely used in graph algorithms and machine learning [5, 23].

6.1 SpMV Algorithm and Accelerator Design
6.1.1 SpMV Algorithm. We use the software code of SpMV from

the widely used accelerator benchmark suite MachSuite [25]. The

sparse matrix is stored in the Ellpack compression format [18],

which allows for a more regular sequential access pattern. The

pseudo code of SpMV is shown in Algorithm 2. In function Com-
pute_Sparse_Product (lines 6-15), for each row of the sparse matrix,

its dot-product is calculated with the input vector. The column

indices of the sparse matrix elements are stored in the same loca-

tion in the corresponding index matrix 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑙𝑢𝑚𝑛𝐼𝑛𝑑𝑒𝑥 . The

dot-product calculation for each row is independent.

6.1.2 Baseline Accelerator Design. We apply a series of common

HLS optimization techniques [12, 13] similar to that in Section 5.1.2.

1. Buffer Tiling. As shown in the function Load_Local_Buffers of
Algorithm 2 (lines 1-5), a number of rows in the sparse matrix

and the column index matrix are read from the off-chip memory

through burst access and buffered in the on-chip memory. Then

Compute_Sparse_Product works on these local buffers. Note the

input vector is small and can always be buffered on chip.

2. Customized Pipeline and Parallelism. First, the memcpy calls in

Load_Local_Buffers are pipelined with initiation interval (II) of

1 (lines 4-5). Second, the j loop to process buffered points inside

one matrix row in Compute_Sparse_Product (line 12) is pipelined
with II of 8 due to the indirect array access. Lastly, the i loop

(line 11) is fully unrolled to parallelize the computation of all

rows in the buffered matrix.

3. Ping-Pong Buffer. We use Ping-Pong buffers to allow functions

Load_Local_Buffers and Compute_Sparse_Product to run in a

coarse-grained pipeline. We call these two functions together

as a single processing element (PE). Each PE uses two AXI read

ports, leading to multi-ports connected to a single DRAM.

4. PE Duplication. We also duplicate the above PE to enable coarse-

grained parallelism and utilize multiple memory banks.

Algorithm 2 Pseudo code for HLS-C/C++ accelerated SpMV

1: function Load_Local_Buffers

2: local_sparseMatrix [# buffered rows][# compressed columns]

3: local_columnIndex [# buffered rows][# compressed columns]

4: memcpy (local_sparseMatrix ← a portion of sparseMatrix from

off-chip memory) //pipeline II=1
5: memcpy (local_columnIndex ← a portion of columnIndex from

off-chip memory) //pipeline II=1
6: function Compute_Sparse_Product

7: local_sparseMatrix [# buffered rows][# compressed columns]

8: local_columnIndex [# buffered rows][# compressed columns]

9: inputVector [# uncompressed matrix columns]

10: local_outputResult [# buffered rows] //Initialized as zeros

11: for i in # of buffered rows do //fully unrolled
12: for j in # of compressed columns do //pipeline II=8
13: idx = local_columnIndex[i][j]

14: this_product = local_sparseMatrix[i][j] * inputVector[idx]

15: local_outputResult[i] += this_product

6.2 Design Exploration with Our Insights
6.2.1 SpMV Setup. In this paper, we scale up the workload size

used in MachSuite [25] for datacenter FPGAs. Our sparse matrix

dimension is N by L, where N is 8,192 and L is 1,024. It has a

compression ratio of 8 in its rows. Each data element of the sparse

matrix is of 32-bit float type. The corresponding column index

matrix has the same dimension as the sparse matrix; its data are

stored in 32-bit unsigned int type.

6.2.2 Performance Model with Our Insights. For design space ex-

ploration, we formulate a performance model in the same approach

used for the KNN accelerator in Section 5.2.2. This is because loop

iterations in our SpMV functions Load_Local_Buffers and Com-
pute_Sparse_Product are pipelined and executed in coarse-grained

pipeline. We use Equation 2 to calculate the latencies of the two

functions in the SpMV accelerator. We adjust the latency calcu-

lation for memory access based on the affecting factors: #𝑝𝑜𝑟𝑡𝑠 ,

𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ,𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, and 𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒 (consecutive data ac-

cess size in a tiled buffer), characterized in Section 4. Finally, to

determine how many PEs can be mapped on a datacenter FPGA,

we use the post place and routing resource utilization report and

Equation 1 to estimate the on-chip memory usage by the AXI ports.

6.2.3 Design Evaluation. As summarized in Table 4, we compare

four memory access configurations of our SpMV design. These

designs have balanced latencies between the Load_Local_Buffers
and Compute_Sparse_Product stages while utilizing all three SLRs
and four DRAMs of the Alvero U200 board.

1. Baseline version. The baseline version uses a buffer size of 32KB,

32-bit port width,𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16, and 30 PEs with 60

AXI ports. It uses the most amount of logic resource and runs the

slowest. The significantly low off-chipmemory bandwidth limits

the design performance, hindered together by the relatively low

port width (480-bit out of 512-bit bus width used per DRAM),

under-optimized 𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, and the constant access

switching in the DRAM row buffer from multiple AXI ports.

2. Aggressive version. For the aggressive, suboptimal, and optimal

versions, we apply the memory coalescing optimization in [12,

13] to widen the AXI port width. These designs all have four

Table 4: Resource usage and performance speedup of four SpMV designs with different memory configurations
design

choices

buffer

size

port

width

max_burst

_length

#PEs :

#ports

device resource utilization (%) freq

(MHz)

speedup

LUT FF BRAM URAM DSP

baseline 32KB 32-bit 16 30 : 60 44 33 84 31 5 281 1x

aggressive 256KB 512-bit 32 4 : 8 32 24 65 53 3 250 7.7x

optimal 256KB 256-bit 64 4 : 8 36 26 53 27 5 291 8.5x

suboptimal 256KB 256-bit 16 4 : 8 36 26 50 27 5 283 5.7x

PEs with eight AXI ports, each PE dedicating to one DRAM on

the U200 FPGA. The aggressive design uses the best bandwidth

configuration for each AXI port: a buffer size of 256KB (to allow

more unroll in the i loop in line 11 of Algorithm 2 to balance the

two stages), 512-bit port width, and𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 32 (i.e.,

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 = 16𝐾𝑏). Compared to the optimal design, it
utilizes 23% and 96%more BRAM andURAMdue to the large size

of partitioned buffers. This degrades the accelerator frequency

to 250MHz, causing the performance of the aggressive design

10% lower than the optimal design.
3. Optimal version. The optimal design uses a more balanced

configuration: a buffer size of 256KB, 256-bit port width, and

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 64 (i.e., 𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 = 16𝐾𝑏). This

brings down resource usage for BRAM and URAM, and improves

the design frequency to 291MHz. Compared to the baseline and

aggressive designs, it achieves 8.5x and 1.1x speedups.

4. Suboptimal version. To further demonstrate the impact of

𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, we also include the suboptimal design,

where the only difference to the optimal design is that it uses the

HLS default𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 16. As a result, the suboptimal
design is 1.5x slower than the optimal design.
In summary, we use the optimal design as our final SpMV design.

It balances the latencies of compute and off-chip memory access

while fully utilizing the effective off-chipmemory bandwidth, which

achieves the theoretical peak performance on the U200 board. It is

about 3.4x faster than the 24-thread CPU implementation.

7 RELATEDWORK
Characterization of FPGA DRAM. In [36], Zhang et al. charac-

terized the off-chip DDR3 bandwidth in an HLS-based FPGA design

for a single AXI port, considering both the port width and consecu-

tive data access size. However, they did not consider the number

of concurrent memory access ports and the maximum burst access

length for each AXI port. In [14], Cong et al. developed an analyti-

cal model to optimize HLS-based accelerator designs by balancing

the on-chip resource usage and the off-chip DRAM bandwidth. In

their model, they only considered the impact of port widths on the

off-chip DRAM bandwidth and did not consider other factors that

we summarized in Section 3.1.

To the best of our knowledge, we are the first to characterize the

off-chip memory bandwidth and accelerator-to-accelerator stream-

ing bandwidth of HLS-based designs under a comprehensive set

of factors. We are also the first to reveal the unstable bandwidth

degradation behavior for multiple concurrent AXI ports access and

provide the guideline of setting𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 to 16Kb to achieve

the optimal off-chip bandwidth.

Characterization of FPGA HBM. Recently, in [28], Wang et al.

evaluated how address mapping policy, bank group, and memory

access locality impact the bandwidth and latency of the HBM for

FPGAs. However, they did not evaluate the impact of port widths,

multiple concurrent ports, and𝑚𝑎𝑥_𝑏𝑢𝑟𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ as we did. More-

over, the memory access pattern evaluated in their design traverses

a memory region with a stride of bytes, which is not the most effi-

cient or commonly used memory access pattern on FPGAs. Finally,

their microbenchmark is developed in RTL, which still leaves a gap

for software programmers who use HLS. More recently, Choi et

al. further proposed HBM Connect [9], a fully customized HBM

crossbar to better utilize HBM bandwidth when multiple PEs access

multiple HBM banks, which is orthogonal to our work.

Characterization of CPU-FPGA Communication. In [10, 11],

Choi et al. evaluated the communication latency and bandwidth

between the host CPU and FPGA for a variety of modern CPU-

FPGA platforms, which is orthogonal to our work.

Characterization of CPU and GPUMemory.Microbenchmark-

ing memory system performance on CPUs and GPUs has been well

studied. For example, In [16], Fang et al. developed a set of mi-

crobenchmarks to measure the memory system microarchitectures

of commodity multicore and many-core CPUs. In [29], Wong et. al

used microbenchmarks to disclose the characteristics of commodity

GPU memory hierarchies. These are orthogonal to our work.

8 CONCLUSION
In this paper, we have developed a suite of open source HLS-C/C++

microbenchmarks to quantitatively characterize the effective mem-

ory system performance of modern datacenter FPGAs such as Xilinx

Alveo U200 (DDR4 based) and U280 (HBM-based) FPGAs, including

off-chip memory access performance and accelerator-to-accelerator

streaming performance. We have identified a comprehensive set

of affecting factors in HLS-based FPGA accelerators, including the

number of concurrent memory access ports, the port width, the

maximum burst access length for each port, and the size of consec-

utive data accesses. By analyzing our microbenchmarking results,

we also provided insights for software programmers into efficient

memory access in HLS-based accelerator designs. Moreover, we

conducted two case studies on the HLS-based KNN and SpMV ac-

celerator designs and demonstrated that leveraging our insights

can provide up to 3.5x and 8.5x speedups over the baseline designs.

Our final designs for KNN and SpMV on the U200 FPGA achieved

about 5.6x and 3.4x speedups over that 24-core CPU implementa-

tion. Finally, our microbenchmark suite and case study benchmarks

are open sourced at: https://github.com/SFU-HiAccel/uBench.

ACKNOWLEDGEMENTS
We acknowledge the support from NSERC Discovery Grant RGPIN-

2019-04613, DGECR-2019-00120, Alliance Grant ALLRP-552042-

2020, COHESA (NETGP485577-15), CWSE PDF (470957), and RG-

PIN341516; Canada Foundation for Innovation John R. Evans Lead-

ers Fund and British Columbia Knowledge Dev. Fund; Simon Fraser

University New Faculty Start-up Grant; Huawei and Xilinx.

https://github.com/SFU-HiAccel/uBench

REFERENCES
[1] Alibaba. 2020. Alibaba compute optimized instance families with FPGAs. https:

//www.alibabacloud.com/help/doc-detail/108504.htm. Last accessed September

12, 2020.

[2] N. S. Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Nonpara-

metric Regression. The American Statistician 46, 3 (1992), 175–185.

[3] Amazon. 2020. Amazon EC2 F1 Instances, Enable faster FPGA accelerator de-

velopment and deployment in the cloud. https://aws.amazon.com/ec2/instance-

types/f1/. Last accessed September 12, 2020.

[4] AnandTech. 2018. Intel Shows Xeon Scalable Gold 6138P with Integrated FPGA,

Shipping to Vendors. https://www.anandtech.com/show/12773/intel-shows-

xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors Last ac-

cessed September 12, 2020.

[5] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and P. Sadayappan. 2014.

Fast Sparse Matrix-Vector Multiplication on GPUs for Graph Applications. In SC
’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, New Orleans, Louisana, 781–792.

[6] N. Bell and M. Garland. 2009. Implementing sparse matrix-vector multiplication

on throughput-oriented processors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. Association for Com-

puting Machinery, New York, NY, USA, 1–11.

[7] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,

Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.

2016. Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization. SIGMETRICS Perform. Eval. Rev.
44, 1 (June 2016), 323–336.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC) (IISWC ’09). IEEE Computer Society, USA, 44–54. http:

//rodinia.cs.virginia.edu/doku.php?id=start

[9] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.

2021. HBM Connect: High-Performance HLS Interconnect for FPGA HBM. In Pro-
ceedings of the 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (Virtual Conference) (FPGA ’21). Association for Computing Machin-

ery, New York, NY, USA.

[10] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and

Peng Wei. 2016. A Quantitative Analysis on Microarchitectures of Modern CPU-

FPGA Platforms. In Proceedings of the 53rd Annual Design Automation Conference
(Austin, Texas) (DAC ’16). Association for Computing Machinery, New York, NY,

USA, Article 109, 6 pages.

[11] Young-Kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and

Peng Wei. 2019. In-Depth Analysis on Microarchitectures of Modern Hetero-

geneous CPU-FPGA Platforms. ACM Trans. Reconfigurable Technol. Syst. 12, 1,
Article 4 (Feb. 2019), 20 pages.

[12] Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu, Chen Zhang,

and Peipei Zhou. 2018. Best-Effort FPGA Programming: A Few Steps Can Go a

Long Way. CoRR abs/1807.01340 (2018).

[13] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-

chong Zhang. 2018. Understanding Performance Differences of FPGAs and GPUs.

In 26th IEEE Annual International Symposium on Field-Programmable Custom Com-
puting Machines, FCCM 2018, Boulder, CO, USA, April 29 - May 1, 2018. Association
for Computing Machinery, New York, NY, USA, 93–96.

[14] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. 2017. Bandwidth Opti-

mization Through On-Chip Memory Restructuring for HLS. In Proceedings of
the 54th Annual Design Automation Conference 2017 (Austin, TX, USA) (DAC ’17).
Association for Computing Machinery, New York, NY, USA, Article 43, 6 pages.

[15] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In

Proceedings of the 38th Annual International Symposium on Computer Architecture
(San Jose, California, USA) (ISCA ’11). Association for Computing Machinery,

New York, NY, USA, 365–376.

[16] Zhenman Fang, Sanyam Mehta, Pen-Chung Yew, Antonia Zhai, James Greensky,

Gautham Beeraka, and Binyu Zang. 2015. Measuring Microarchitectural Details

of Multi- and Many-Core Memory Systems through Microbenchmarking. ACM
Trans. Archit. Code Optim. 11, 4, Article 55 (Jan. 2015), 26 pages.

[17] Guo Gongde, Wang Hui, Bell David, Bi Yaxin, and Greer Kieran. 2003. KNN

Model-Based Approach in Classification. In International Conference on Ontologies,
Databases and Applications of Semantics (ODBASE 2003). Springer, Switzerland,
986–996.

[18] Weerawarana Houstis, S. Weerawarana, E. N. Houstis, and J. R. Rice. 1990. An In-

teractive Symbolic–Numeric Interface to Parallel ELLPACK for Building General

PDE Solvers. In Symbolic and Numerical Computation for Artificial Intelligence.
303–322.

[19] Intel. 2020. Intel Stratix 10 FPGAs. https://www.intel.ca/content/www/ca/en/

products/programmable/fpga/stratix-10.html Last accessed September 12, 2020.

[20] Alec Lu, Zhenman Fang, Nazanin Farahpour, and Lesley Shannon. 2020. CHIP-

KNN: AConfigurable andHigh-Performance K-Nearest Neighbors Accelerator on

Cloud FPGAs. In 2020 International Conference on Field-Programmable Technology
(Virtual Conference) (FPT ’20).

[21] Microsoft. 2020. Azure SmartNIC. https://www.microsoft.com/en-us/research/

project/azure-smartnic/. Last accessed September 12, 2020.

[22] Nimbix. 2020. Xilinx Alveo Accelerator Cards. https://www.nimbix.net/alveo.

Last accessed September 12, 2020.

[23] E. Nurvitadhi, A. Mishra, and D. Marr. 2015. A sparse matrix vector multiply accel-

erator for support vector machine. In 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES). 109–116.

[24] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-

stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth

Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,

Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron

Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable

Fabric for Accelerating Large-Scale Datacenter Services. In Proceeding of the
41st Annual International Symposium on Computer Architecuture (Minneapolis,

Minnesota, USA) (ISCA ’14). IEEE Press, 13–24.

[25] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David

Brooks. 2014. MachSuite: Benchmarks for Accelerator Design and Customized

Architectures. In Proceedings of the IEEE International Symposium on Workload
Characterization. Raleigh, North Carolina, 110–119.

[26] Thomas Seidl and Hans-Peter Kriegel. 1998. Optimal Multi-Step k-Nearest Neigh-

bor Search. SIGMOD Rec. 27, 2 (June 1998), 154–165.
[27] J Stuecheli, Bart Blaner, CR Johns, and MS Siegel. 2015. CAPI: A Coherent

Accelerator Processor Interface. IBM Journal of Research and Development 59, 1
(2015), 7:1–7:7.

[28] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. 2020. Shuhai:

Benchmarking High BandwidthMemory on FPGAs. In The 28th IEEE International
Symposium On Field-Programmable Custom Computing Machines (Fayetteville,
AR) (FCCM ’20). 111–119.

[29] Henry Wong, Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas

Moshovos. 2010. Demystifying GPUmicroarchitecture through microbenchmark-

ing. In 2010 IEEE International Symposium on Performance Analysis of Systems
Software (ISPASS). 235–246.

[30] Xilinx. 2017. Vivado Design Suite Vivado AXI Reference. https://www.xilinx.

com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-

vivado-axi-reference-guide.pdf. Last accessed September 12, 2020.

[31] Xilinx. 2020. Alveo U200 and U250 Data Center Accelerator Cards Data

Sheet. https://www.xilinx.com/support/documentation/data_sheets/ds962-

u200-u250.pdf Last accessed September 12, 2020.

[32] Xilinx. 2020. Alveo U280 Data Center Accelerator Cards Data Sheet. https://www.

xilinx.com/support/documentation/data_sheets/ds963-u280.pdf Last accessed

September 12, 2020.

[33] Xilinx. 2020. Vitis Unified Software Platform. https://www.xilinx.com/products/

design-tools/vitis/vitis-platform.html#development Last accessed September 12,

2020.

[34] Xilinx. 2020. Vivado Design Suite User Guide, High-Level Synthe-

sis. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/

ug902-vivado-high-level-synthesis.pdf. Last accessed September 12, 2020.

[35] Bin Yao, Feifei Li, and Piyush Kumar. 2010. K nearest neighbor queries and kNN-

Joins in large relational databases (almost) for free. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). 4–15.

[36] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason

Cong. 2019. Caffeine: Toward Uniformed Representation and Acceleration for

Deep Convolutional Neural Networks. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 38, 11 (2019), 2072–2085.

https://www.alibabacloud.com/help/doc-detail/108504.htm
https://www.alibabacloud.com/help/doc-detail/108504.htm
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
http://rodinia.cs.virginia.edu/doku.php?id=start
http://rodinia.cs.virginia.edu/doku.php?id=start
https://www.intel.ca/content/www/ca/en/products/programmable/fpga/stratix-10.html
https://www.intel.ca/content/www/ca/en/products/programmable/fpga/stratix-10.html
https://www.microsoft.com/en-us/research/project/azure-smartnic/
https://www.microsoft.com/en-us/research/project/azure-smartnic/
https://www.nimbix.net/alveo
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#development
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#development
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf

	Abstract
	1 Introduction
	2 Datacenter FPGAs and Our Focus
	3 Microbenchmark Design
	3.1 Key Factors on Memory Performance
	3.2 Design Challenges and Solutions
	3.3 Microbenchmarks for Bandwidth Test
	3.4 Microbenchmarks for Latency Test

	4 Results and Insights
	4.1 Experimental Setup
	4.2 Bandwidth and Resource Utilization for Single Argument AXI Port Off-Chip Access
	4.3 Bandwidth and Resource Utilization for Multiple AXI Ports Off-Chip Access
	4.4 Off-Chip Bandwidth for Multiple Arguments Sharing a Single AXI Port
	4.5 Bandwidth and Resource Utilization for Accelerator-to-Accelerator Streaming Ports
	4.6 Latency for Off-Chip Access

	5 Case Study 1: k-Nearest Neighbor
	5.1 KNN Algorithm and Accelerator Design
	5.2 Design Exploration with Our Insights

	6 Case Study 2: SpMV
	6.1 SpMV Algorithm and Accelerator Design
	6.2 Design Exploration with Our Insights

	7 Related Work
	8 Conclusion
	References

