
CHIP-KNN: A Configurable and High-Performance
K-Nearest Neighbors Accelerator on Cloud FPGAs

Alec Lu∗, Zhenman Fang∗, Nazanin Farahpour† and Lesley Shannon∗
∗Simon Fraser University, Burnaby, BC, Canada

{alec lu, zhenman, lesley shannon}@sfu.ca
†University of California, Los Angeles, USA; nazanin@cs.ucla.edu

Abstract—The k-nearest neighbors (KNN) algorithm is an es-
sential algorithm in many applications, such as similarity search,
image classification, and database query. With the rapid growth
in the dataset size and the feature dimension of each data point,
processing KNN becomes more compute and memory hungry.
Most prior studies focus on accelerating the computation of
KNN using the abundant parallel resource on FPGAs. However,
they often overlook the memory access optimizations on FPGA
platforms and only achieve a marginal speedup over a multi-
thread CPU implementation for large datasets.

In this paper, we design and implement CHIP-KNN—an HLS-
based, configurable, and high-performance KNN accelerator—
which optimizes the off-chip memory access on cloud FPGAs
with multiple DRAM or HBM (high-bandwidth memory) banks.
CHIP-KNN is configurable for all essential parameters used
in the algorithm, including the size of the search dataset, the
feature dimension of each data point, the distance metric, and the
number of nearest neighbors - K. To optimize its performance, we
build an analytical performance model to explore the design space
and balance the computation and memory access performance.
Given a user configuration of the KNN parameters, our tool
can automatically generate the optimal accelerator design on the
given FPGA platform. Our experimental results on the Nimbix
cloud computing platform show that: Compared to a 16-thread
CPU implementation, CHIP-KNN on the Xilinx Alveo U200
FPGA board with four DRAM banks and U280 FPGA board
with HBM achieves an average of 7.5x and 19.8x performance
speedup, and 6.1x and 16.0x performance/dollar improvement.

I. INTRODUCTION

The k-nearest neighbors (KNN) algorithm [1] is one of the

top 10 most influential algorithms in the data mining research

community [2]. It is widely used in many applications such as

similarity search, image classification, and database query [3]–

[5]. With the rapid growth in the size of the overall search

dataset and the dimension of each data point’s feature vector,

there is an ever-increasing demand of computing resource and

memory bandwidth to process the KNN algorithm [6], [7].

Considering the significant slowdown of CPU performance

scaling and the high power consumption of GPUs, recently, ac-

celerating the performance of KNN on FPGAs has gained in-

creasing attention. Several prior studies [8]–[10] have achieved

decent performance and/or energy efficiency improvements

over the CPU and GPU implementations by exploring the

massive fine-grained parallelism for the neighbor distance

calculation and sorting in their FPGA-based KNN accelerator

designs. For example, the latest FPGA accelerator for KNN

in [8] achieves an equivalent performance as a 56-thread CPU

implementation for large datasets. Compared with the GPU

accelerator for KNN, the FPGA accelerator in [9] achieves 3x

better performance-per-Joule ratio for small datasets.

However, there are two major issues in most of these prior

KNN accelerator designs on FPGAs [8]–[10]. First, most of

them, except the latest design in [8], only support a fixed

configuration of KNN with a small dataset, fixed feature

dimension, and distance metric. Second, most prior studies

overlook the memory access optimizations, which limits the

KNN accelerator performance on FPGAs, especially for large

datasets that cannot fit into on-chip memory. Although modern

datacenter FPGAs have equipped with multiple DRAM or

HBM banks to boost the off-chip memory bandwidth, many

existing KNN accelerator designs only utilize no more than

12% of the available off-chip bandwidth on their evaluated

platforms as summarized in Section V-A.

In this paper we design and implement CHIP-KNN, an

open-source, HLS (high-level synthesis) C based, configurable,

and high-performance KNN accelerator on cloud FPGAs. To

better support large search datasets and scale to different

cloud FPGA platforms, CHIP-KNN takes a scalable multi-PE

(processing element) approach. For each PE, we optimize its

computation—i.e., neighbor distance calculation and sorting—

on a small tile of dataset buffered on chip by exploring the

pipeline parallelism and fine-grained data parallelism enabled

by a novel sorting algorithm. To optimize the data loading

between off-chip memory and on-chip buffers for each PE,

we carefully tune the data width of its memory access port

and the size of its consecutive data access to better utilize off-

chip memory bandwidth. Moreover, we scale the number of

PEs to explore the coarse-grained parallelism and better utilize

the available off-chip memory bandwidth of multiple DRAM

or HBM banks on cloud FPGAs.

CHIP-KNN is also configurable to all key parameters used

in the KNN algorithm, which includes 1) the number of data

points in the search space, N, 2) the dimension of each data

point’s feature vector, D, 3) the distance metric, and 4) the

number of nearest neighbors, K. Given a user configuration

of these KNN parameters and an FPGA platform, our tool

can automatically generate the optimal accelerator design that

reaches either the off-chip memory bandwidth boundary or

the FPGA computing resource boundary. To achieve this

automation, we also build an analytical performance model for

all the three major stages—data loading, distance calculation,

and distance sorting—to explore the design space and balance

(overlap) the execution of these three stages.

We conduct our experiments on the Nimbix cloud [11]

with the Xilinx Alveo U200 [12] and U280 [13] datacenter

FPGA boards and various configurations of KNN parameters.

On average, compared to a 16-thread CPU implementation,

CHIP-KNN on Alveo U200 and U280 achieves 7.5x and

19.8x performance speedup; at the same time, CHIP-KNN also

achieves 6.1x and 16.0x performance/dollar improvement.

II. KNN ALGORITHM AND CLOUD FPGAS

A. KNN Algorithm

In this paper we mainly focus on the exact KNN algorithm

without any approximation for two reasons. First, approximate

KNNs [14]–[16] achieve lower accuracy. Second, even in

approximate KNN methods, after the initial classification or

filtering, they still have to apply the exact KNN in the final

step. The exact KNN algorithm consists of two major tasks:

1. Distance calculation. For an input query, this step calculates

its distance to every data point in the search space. Each

point is represented by a D-dimension feature vector. Com-

mon distance metrics include Euclidean and Manhattan
distances between two feature vectors. Assume there are N
points in the search space, the algorithmic complexity for

this step is O(N*D). There is abundant data parallelism in

this function: 1) the distance calculation for each data point

can be parallelized, and 2) to calculate a single distance,

the computation between each feature dimension can be

parallelized. The data access complexity is also O(N*D),
making the memory access optimizations very important.

2. Top K distances sorting. This step sorts the N distances

and returns the K nearest neighbors, where K is usually

very small, e.g., K=10. Note its algorithmic complexity is

O(N*K) instead of O(N*logN), since it only sorts the K

smallest distances. Task-level parallelism can be realized

by sorting a subset of the search space in parallel.

To summarize, the essential parameters in the KNN algo-

rithm include N, D, K, and distance metric.

B. Cloud FPGAs

To meet the increasing demand in computing resource and

off-chip bandwidth, modern cloud FPGAs typically consist of

multiple FPGA dies and multiple DRAM or HBM banks.

For example, in the Nimbix cloud [11], the Xilinx Alveo

U200 [12] FPGA board has three SLRs (super logic regions,

i.e., FPGA dies) and four DDR4 banks (64GB size), which

can provide up to 76.8GB/s theoretical memory bandwidth.

And the Alveo U280 [13] FPGA board has three SLRs and

32 HBM2 banks (8GB size), which can provide up to 460GB/s

theoretical memory bandwidth. This provides great opportu-

nity to accelerate the performance of the KNN algorithm.

However, most prior studies [8]–[10] on KNN acceleration

overlook the memory access optimization on FPGA platforms

and achieve sub-optimal performance. In fact, many of them

only utilize no more than 12% of such available off-chip

memory bandwidth. First, they do not explore the parallel

access bandwidth of multiple DRAM or HBM banks. Second,

even for accessing a single memory bank, they do not tune the

access to achieve the maximum effective bandwidth, which

may leave a bandwidth gap up to 16x according to [17], [18].

III. CHIP-KNN DESIGN

To better accelerate KNN with large search datasets on

different cloud FPGAs with multiple DRAM or HBM banks,

CHIP-KNN takes a scalable multi-PE (processing element) ap-

proach. The overall architecture of our CHIP-KNN accelerator

is shown in Figure 1. In Section III-A, we present the single-

PE design with a novel sorting algorithm and common HLS

optimizations such as buffering, pipelining, parallelization, and

Ping-Pong buffer [19], [20]. In Section III-B, we present the

multi-PE design with a global top K merger that explores

the coarse-grained parallelism and the off-chip bandwidth of

multiple DRAM or HBM banks. In Section III-C, we char-

acterize the effective off-chip bandwidth of a single DRAM

or HBM bank and optimize each PE’s memory access. In

Section III-D, we build an analytical performance model

to guide the performance balancing of the computation and

memory access stages. Finally, in Section III-E, we develop

our automation tool to generate the optimal accelerator design

for a given user configuration on a given cloud FPGA platform.

A. Single-PE Design with Hardware-Oriented KNN Algorithm

Algorithm 1 shows the pseudo code of our single-PE KNN

algorithm. We support the following user-configured parame-

ters as described in Section II-A: N, D, K, and distance metric.

Currently, we only support the most widely used single-

precision floating data type and Euclidean and Manhattan

distances in CHIP-KNN, but it can be easily extended to

support other data types and distance metrics. For each tile

of the dataset, the PE buffers it on chip and processes it in

three major stages. Note all lines of code refer to Algorithm 1.

1) Load Buf Stage (Lines 1-3): To improve the memory

access performance, this stage reads a portion of the search

space data points from off-chip memory and buffers them in

the on-chip memory. This memory read uses burst access and

achieves an II (initial interval) of 1. The following two stages,

Dist Calc and Top K Sort, work on this local on-chip buffer.

In Section III-C we will present more details on choosing the

optimal memory access port width and tile size to maximize

the off-chip memory bandwidth utilization of this stage.

2) Dist Cal Stage (Lines 4-10): This stage calculates the

distance between the query point and each point in the buffered

search space. Between two D-dimension data points, X and Y,

the Manhattan distance and Euclidean distance are:

M(X,Y) =

D∑

i=1

∣∣Xi − Yi

∣∣ , E(X,Y) =

D∑

i=1

(Xi − Yi)
2 (1)

where we do not include the square root operation for Eu-

clidean distance in either CPU or FPGA implementations.

In this stage, we explore the following fine-grained data

parallelism and pipeline parallelism. First, we fully parallelize

Fig. 1: Overall architecture of our CHIP-KNN accelerator

Algorithm 1 Pseudo HLS-C code for single-PE KNN accel-

erator. User-configurable parameters are noted in italic blue
font, including N, D, K, and distance metric, as described in

Section II-A. B denotes the number of buffered data points.

1: function LOAD BUF

2: local search space[B][D]
3: memcpy (local search space ← a portion of N data points

in search space from off-chip memory) //pipeline II=1
4: function DIST CALC

5: input query[D]
6: local search space[B][D]
7: point dist[B]
8: for i in 0 to B do
9: //pipeline II=dist II, unroll=dist factor

10: point dist[i] = Manhattan or Euclidean distance
11: function TOP K SORT

12: point dist[B + K] //K dummy MAX dist
13: point id[B + K] //K dummy invalid ids
14: k nearest dist[K+2] ////Initialized as MAX dist
15: k nearest id[K+2] //Initialized as invalid ids
16: for i in range 0 to B + K do
17: //unroll=sort factor, pipeline II=3
18: k nearest dist[0] = point dist[i]
19: k nearest id[0] = point id[i]
20: //Parallel compare-and-swap with items ahead
21: for j in 1 to K; j+=2 do //fully unrolled
22: if k nearest dist[j] < k nearest dist[j+1] then
23: swap (k nearest dist[j], k nearest dist[j+1])
24: swap (k nearest id[j], k nearest id[j+1])

25: //Parallel compare-and-swap with items behind
26: for j in 1 to K; j+=2 do //fully unrolled
27: if k nearest dist[j] > k nearest dist[j-1] then
28: swap (k nearest dist[j], k nearest dist[j-1])
29: swap (k nearest id[j], k nearest id[j-1])

30: //Optional step to merge local top K results in this function

(unroll) the calculation of all D dimensions in each distance

calculation as shown in Equation 1 when necessary; for

very high dimension D, we only perform partial unroll to

balance different stages. Second, we further divide the buffered

search space into dist factor partitions and fully parallelize the

distance calculation within each partition. Third, we pipeline

the processing between multiple partitions with II of dist II,
as shown in lines 8-9. In Section III-E, our automation tool

will choose the optimal dist factor and dist II to balance the

execution of the three stages in each PE.

3) Top K Sort Stage (Lines 11-30): This step sorts the

top K nearest neighbors to the input query data point and

returns the sorted top K distances and their corresponding data

point IDs (lines 14-15). To improve the hardware efficiency,

we propose the following novel top K sorting algorithm, which

reduces the overall algorithmic complexity to O(3N).

1. To avoid the frequent off-chip memory write and read of

the local top K results for each tile, we use the on-chip

buffer k nearest dist to store the up-to-date top K results

across all processed tiles within each PE. For each tile, this

k nearest dist buffer is compared against all the B data

points in the point dist buffer (lines 12-13) to make sure it

always keeps the K smallest distances. That is, we have the

i loop that iterates the point dist buffer as the outer loop

(line 16), and the j loops that iterate the k nearest dist
buffer as the inner loops (lines 21 and 26).

2. To enable fine-grained data parallelism and pipeline paral-

lelism, inside each loop iteration i (line 16), we split the

compare-and-swap loop into two j loops. For the first j

loop (lines 20-24), it compares-and-swaps elements with

their next neighbor. For the second j loop (lines 25-29), it

compares-and-swaps elements with their previous neighbor.

Both loops increment j by a step of two. As a result, we

can fully parallelize (unroll) both j loops. Moreover, we can

pipeline the i loop with an II of 3. Note that the ideal II of

the i loop should be 2; however, when we scale the design

to multiple PEs, Vivado HLS can only achieve an II of 3.

To explore coarse-grained parallelism, we further divide the

point dist buffer into sort factor partitions and all partitions

sort their own top K results in parallel. After processing all

tiles within the PE, a local merger within the Top K Sort
function is used to merge sort factor copies of top K results

buffered on chip, which has an algorithmic complexity of

O(sort factor*K). Since sort factor is much smaller than N,

the execution time of this local merger is negligible. In cases

of high-dimensional feature vectors, this coarse-grained paral-

lelism optimization is not needed since the Top K Sort stage

runs much faster than the other two stages. In Section III-E,

our automation tool will decide whether the coarse-grained

parallelism optimization and the corresponding local merger

is needed, and if yes, it will choose the optimal sort factor to

balance the execution of the three stages in each PE.

Proof of the Top K Sort algorithm. Finally, we prove the

correctness of our novel hardware-friendly sorting algorithm.

To get started, k nearest dist[1 : K] swaps in the first

K distances from point dist[0 : K − 1] after the first K

iterations of the i loop. For any following loop iteration

i >= K (line 16), it compares k nearest dist[1 : K] (i.e.,

current top K distances) and k nearest dist[0] (i.e., incoming

point dist[i]) so that the largest distance is always swapped

to k nearest dist[0]. This is guaranteed because:

1. If the largest distance is k nearest dist[0] in iteration i,
it is already there and does not need any swapping.

2. If the largest distance is newly introduced in iteration i′,
i.e., i −K < i′ < i, then the furthest position this largest

distance can go is i − i′. At the same time, in iteration

i, it has already gone through i − i′ compares-and-swaps.

Therefore, it is guaranteed to arrive at k nearest dist[0].
3. If the largest distance was in k nearest dist[1 : K], in

iteration i − K or earlier, it has already gone through K

compares-and-swaps to arrive at k nearest dist[0].

In summary, k nearest dist[1 : K] always keeps the K

smallest distances. The final extra K iterations (line 16) are

used to ensure that the final k nearest dist[1 : K] are sorted

from the largest to the smallest.
4) Ping-Pong Buffer: Finally, we use the Ping-Pong buffer

technique [19], [20] to execute the Load Buf, Dist Cal, and

Top K Sort stages in a coarse-grained pipeline. We call these

three stages together as a single processing element (PE).

B. Multi-PE Scaling
To better scale the design to utilize the computing resource

from multiple SLRs (FPGA dies) and off-chip bandwidth

from multiple DRAM or HBM banks, CHIP-KNN further

exploits the task-level parallelism by instantiating multiple PE

instances to process different partitions of the search space in

parallel. We denote the number of PEs as P, which will be

generated by our automation tool in Section III-E.
Since each PE only produces the partial top K result, we

add a global top K merger to merge the P copies of local

top K results to the global K-nearest neighbors. This global

top K merger only needs to execute once after all PEs finish

processing all of their tiled buffers. It has an algorithmic

complexity of O(P*K) and its execution time is negligible if

the data access to all the local top K results are on chip.
There are two major considerations in the multi-PE design.

1. One big kernel vs. multiple small kernels. In the one

big kernel approach, all PEs can easily exchange data

through on-chip buffer by default. However, it is usually

quite challenging for the cross-SLR placement and routing.

Therefore, we decide to use the multiple small kernels

approach. Specifically, for each SLR, we implement one

kernel that includes a maximum number of PEs that can fit

into the SLR. And we also implement one kernel for the

global top K merger itself. As a result, we can bind each

kernel to one SLR to avoid the cross-SLR placement and

routing issue and bind the data access to multiple DDR or

HBM banks to utilize more off-chip bandwidth.

Fig. 2: Bandwidth of a single HBM bank on Alveo U280

FPGA, with different consecutive data access sizes and mem-

ory access port widths. Note the x-axis is plotted in log2 scale.

2. Kernel-to-kernel streaming. The drawback of the multiple

small kernels approach is that different kernels have to

exchange data through off-chip memory by default. Specif-

ically in our design, multiple kernels have to provide the

local top K results to the global top K merger kernel.

To address this issue, we exploit the new kernel-to-kernel

streaming feature in Xilinx Vitis 2019.2 [21] to enable their

data communication through the on-chip streaming.

C. Off-Chip Bandwidth Characterization and Optimization

To optimize the data access between off-chip memory and

on-chip buffers for each PE, we follow the method described

in [18] to characterize the effective memory access bandwidth

of a single HBM bank on the Alveo U280 FPGA board [13].

Shown in Figure 2, as the memory access port width increases

and the consecutive data access size increases, the effective

bandwidth increases. While the peak theoretical bandwidth of

a single HBM bank is 14.4GB/s, the peak effective bandwidth

is only 13.18GB/s and can only be achieved when the port

width is no less than 512bits and the consecutive access size

is no less than 128KB. We also characterize the effective

bandwidth of a DDR4 bank on the Alveo U200 FPGA

board [12] and find that it has a similar trend as the HBM

bank, except that its peak effective bandwidth is at 17.94GB/s

while the peak theoretical bandwidth is 19.2GB/s.

Based on these characterization results, we optimize the off-

chip memory access bandwidth in CHIP-KNN (mainly in the

Load Buf stage) by carefully tuning 1) its memory access

port width, denoted as port width, and 2) its consecutive

data access size, i.e., the size of the local search space buffer,

denoted as buf size. Note that the best bandwidth configu-

ration with port width = 512bits and buf size = 128KB
does not necessary give the best overall performance of the

multi-PE design of CHIP-KNN, because this configuration

also consumes more resource and can limit the number of PEs

and the placement and routing. In Section III-D and III-E, we

will build an analytical performance model and automation

tool to choose the optimal port width and buf size.

D. Analytical Performance Model

To guide our automation tool to select the optimal design

points, we build an analytical performance model to calcu-

late the latencies for all three stages—including Load Buf,

Dist Cal, and Top K Sort in Algorithm 1—that execute in a

coarse-grained pipeline. The goal is to balance the execution

of these three stages within each PE. Since each function is

pipelined, its latency to execute a single tile is calculated as:

Latency =(pipe iterations− 1) ∗ II + pipe depth (2)

where pipe iterations is the number of pipeline iterations, II

is the initiation interval, and pipe depth is the pipeline depth.

Load Buf. The latency to load one tile is:

Load = [(buf size/port width− 1) + depthld] ∗
effective BW factor(buf size, port width)

(3)

where the burst read achieves an II of 1, each load reads

port width size of data and it needs buf size/port width
number of loads, depthld is the fixed initialization overhead

that can be retrieved from one-time HLS synthesis. By default,

Vivado HLS assumes an ideal linear bandwidth scaling with

the port width and does not consider the effective memory

bandwidth that we have characterized in section III-C. To make

it more accurate, we introduce effective BW factor =
theoretic BW/effective BW to adjust the load latency

based on buf size and port width.

Dist Calc. The latency to calculate distances for one tile is:

Dist Lat =(B/dist factor − 1)∗dist II+depthdist (4)

where B is the number of buffered distances and can be

derived as B = buf size/D/sizeof(float). The dist factor
and dist II can be adjusted to tune the latency of this function.

The corresponding depthdist can be inferred from the pipeline

depth value when dist factor = 1 and dist II = 1, which

can be retrieved from one-time HLS synthesis.

Top K Sort. The latency to sort distances for one tile is:

Sort Lat =((B +K)/sort factor − 1)∗3+depthsort (5)

which is similar to Equation 4, except that the II is fixed as

3. The sort factor can be adjusted to tune the latency. The

depthsort can be inferred from one-time HLS synthesis.

As explained in Section III-A and III-B, the latencies of the

optional local top K merger in the Top K Sort stage and the

global top K merger are negligible and thus not modeled. But

their execution time is included in the final experiments.

E. Automation Support for CHIP-KNN

To support flexible KNN designs and eliminate the laborious

design space exploration, for a given user configuration of

KNN parameters and a target FPGA platform, we develop

a design automation tool, shown in Figure 3, to generate

the optimal accelerator design that best utilizes the off-chip

memory bandwidth under the available FPGA resource limit.

1. Given a user configuration of N, D, K, and distance metric
as input, our automation tool first generates a collection

of balanced single-PE KNN designs based on our CHIP-

KNN design template. To explore the design space, we

vary the buf size of 64KB and 128KB and port width
of 256bits and 512bits. Based on our performance model,

we generate the corresponding balanced dist factor, dist II,
and sort factor parameters of the three design stages.

Analytical
Performance

Model

Vivado
HLS

Synthesis
Resource

Utilization

Optimal Design
Configuration

Search

Memory
Bandwidth
Analysis

Bandwidth
Utilization Optimized

Multi-PE
Design

CHIP-KNN
Design

Template

buf_size
port_width

dist_II
dist_factor
sort_factor

PE
tiles

Build
Passed?No

Relax Target: 5%
Less Resource

Return
Design

TOOL
OUTPUT

Our
Tool Design

Existing
Tool Design

Yes

Balanced
Single-PE

Design
Choices

KNN Algorithm
Parameters

N, D, Dist, and K

FPGA Platform
Information

logic & memory

USER
INPUT

buf_size
port_width

dist_II
dist_factor
sort_factor

Fig. 3: Flowchart of design automation for CHIP-KNN

2. For each balanced single-PE design, our tool determines

its resource utilization using Vivado HLS synthesis and

its bandwidth utilization based on the memory bandwidth

characterization in Section III-C.

3. In the optimal design configuration search step, we first

scale the number of PEs for each balanced design choice

by taking the available logic and memory resource of the

FPGA platform as input. Since each PE occupies one single

off-chip memory bank in CHIP-KNN, we determine the

maximum number of PEs that can fit onto the FPGA as:

#PEs = min(#off chip memory banks,

α ∗ FPGA resource/PE resource)
(6)

where α is a coefficient that is initially set as 70%, since

a typical design that uses more than 70% of the FPGA

resource is very hard to pass the placement and routing.

4. Based on the maximum number of PEs and the bandwidth

utilization results for each PE, we can decide the total band-

width utilization for each multi-PE design choice. Our tool

chooses the design that achieves the highest bandwidth as

the final optimal design point, and generates the final design

with a set of parameters including buf size, port width,

dist factor, dist II, sort factor, #PEs, and #tiles per PE
(i.e., number of buffered tiles per PE).

5. Finally, we build the generated optimal design with Xilinx

Vitis 2019.2 tool [21]. If it is successfully built, it ends

with the selected design. Otherwise if the design fails the

placement and routing, we relax the current α by 5% (i.e.,

using 5% less resource) and repeat step 3 to 5 again until

the design can be successfully built. Our experiments show

that at most we need to take 5 iterations until α = 50% to

find the final optimal design that can be successfully built.

IV. RESULTS AND ANALYSIS

A. Experimental Setup
KNN configuration. We evaluate CHIP-KNN with a wide

range of parameter configurations listed in Table I. The number

of data points in the search space (N) ranges from 2M to

8M and the feature dimensions (D) ranges from 2 to 128.

That is, the total size of the search space data, which is

N ∗D∗sizeof(float) bytes, ranges from 16MB (when N=2M
and D=2) to 4GB (when N=8M and D=128). The K value

we evaluate ranges from 5 to 20, since typically small Ks

are used in real world applications. For distance metrics,

both Manhattan and Euclidean distances are evaluated. All the

results are presented for a single input query.

TABLE I: Evaluated key KNN parameter configurations

KNN Parameters Values
N: number of data

points in search space
2M, 4M, 6M, 8M

D: feature dimension 2, 4, 8, 16, 32, 64, 128
K 5, 10, 15, 20

Distance metric Manhattan, Euclidean

Hardware platform and software tool. We perform all our

experiments on the Nimbix cloud [11]. To evaluate the CPU

implementation, we use a computing instance with the 22nm

8-core (16-thread) Xeon E5-2640 v3 CPU and 128GB DRAM.

The rental price for this CPU instance is $2.42/hour. The

software program of KNN is parallelized using Pthread and

compiled with gcc -Ofast optimization flag, which uses all 16

threads of the CPU instance and automatically explores the

vectorization optimization. We evaluate our CHIP-KNN ac-

celerator designs on both the 16nm Xilinx Alveo U200 (with

four DDR4 banks) [12] and U280 (with 32 HBM2 banks) [13]

datacenter FPGA boards as described in Section II-B. The

rental prices for both FPGA instances are $3.00/hour. We build

our CHIP-KNN designs using Xilinx Vitis 2019.2 [21]. For

the FPGA version, we only include the kernel execution time.

All speedup and performance/dollar improvement results are

normalized to the 16-thread CPU implementation.

B. Overall Speedup and Performance/Dollar Improvement

Fig. 4: Geometric mean of speedup and performance per dollar

improvement over CPU across all configurations in Table I

Figure 4 summarizes the geometric mean of performance

and performance/dollar improvement results of CHIP-KNN on

Alveo U200 and U280 FPGAs over the 16-thread CPU ver-

sion across all configurations in Table I. On average, CHIP-

KNN achieves 7.5x speedup and 6.1x performance/dollar

improvement on Alveo U200 FPGA, and 19.8x speedup and

16.0x performance/dollar improvement on Alveo U280 FPGA.

C. Speedup for Different KNN Configurations

Next, we present more detailed speedup results when we

change one of the parameters in N, D, K, and distance metric.

We omit the performance/dollar results which can be inferred

from the speedup results and rental prices.

Fig. 5: Performance speedup for different feature dimensions

with N=4M, K=10, and Euclidean distance

TABLE II: Execution time of CHIP-KNN for different feature

dimensions with N=4M, K=10, and Euclidean distance

Execution
Time (ms)

2D 4D 8D 16D 32D 64D 128D

CPU 5.93 7.39 11.11 20.04 38.55 70.89 142.54
U200 0.56 0.99 1.89 3.76 7.48 14.92 29.82
U280 0.32 0.36 0.44 0.85 2.48 5.45 17.33

1) Speedup for Different Feature Dimensions: Figure 5

presents the speedup of CHIP-KNN over the 16-thread CPU

implementation at different feature dimensions (D=2, 4, ...,

128) with N=4M, K=10, and Euclidean distance. On the Alveo

U200 FPGA, the speedup decreases when D increases. This

is because the performance of CHIP-KNN on U200 FPGA

is bound by the off-chip bandwidth; as shown in Table II, its

execution time scales linearly with D that linearly increases the

total dataset size. On the other hand, with a larger D, the CPU

implementation can better utilize vectorization instructions and

thus its execution time increases sub-linearly.
On the Alveo U280 FPGA that provides higher off-chip

bandwidth with HBM banks, CHIP-KNN achieves much

higher speedup, which is up to 25x for the 8D KNN design.

The performance of CHIP-KNN on U280 FPGA is bound

by the available computing resource and the placement and

routing. The speedup fluctuation on U280 FPGA for different

Ds is caused by the variation in the number of PEs and

port width that affect the final bandwidth utilization. We will

analyze the accelerator efficiency in Section IV-D.
2) Speedup for Different Ks: Figure 6 shows the speedup of

CHIP-KNN for K=5, 10, 15, and 20, with N=4M, D=64, and

Euclidean distance. When K increases, CHIP-KNN achieves

slightly higher speedup. This is because, with a larger K,

the FPGA accelerator performance remains almost the same

according to Algorithm 1, while the CPU execution time

slightly increases in the top K sort stage.

Fig. 6: Performance speedup for different Ks with N=4M,

D=64, and Euclidean distance

3) Speedup for Different Distance Metrics: Figure 7 shows

the speedup of CHIP-KNN for Manhattan and Euclidean

distances with N=4M, D=64, and K=10. Using Manhattan

distance, CHIP-KNN achieves about 10.9% higher speedup

TABLE III: Automation output, resource utilization, frequency, execution time, and bandwidth utilization of CHIP-KNN designs

on Alveo U280 FPGA with D=2, 4, ..., 128, N=4M, K=10, and Euclidean distance

D: feature
dimension

buf
size

port
width

dist
II

dist
factor

sort
factor

#
PEs

#tiles
/PE

Resource Utilization freq
(MHz)

time
(ms)

bandwidth
(GB/s)LUT FF BRAM URAM DSP

2D

∼128KB

256bit 1 4 12 18 15 67 39 60 30 12 218 0.32 98
4D 512bit 1 4 12 16 32 68 41 58 27 20 228 0.36 173
8D 512bit 1 2 6 24 43 66 47 37 40 31 229 0.44 283

16D 512bit 1 1 3 28 74 63 45 32 47 36 205 0.85 296
32D 512bit 2 1 3 24 171 50 39 27 40 30 216 2.48 202
64D 512bit 3 1 1 16 512 45 37 21 27 28 260 5.45 183
128D 256bit 12 1 1 16 1024 47 38 18 14 15 259 17.33 115

Fig. 7: Performance speedup for different distance metrics with

N=4M, D=64, and K=10

Fig. 8: Performance speedup for different dataset sizes with

D=64, K=10, and Euclidean distance

than that using Euclidean distance. This is because CHIP-

KNN achieves almost the same performance for the two

distance metrics. However, in the CPU implementation, the

version with Manhattan distance executes around 10.9% longer

than that with Euclidean distance, due to the branch instruction

overhead for the absolute math function.

4) Speedup for Different Dataset Sizes: Figure 8 shows the

speedup of CHIP-KNN for N=2M, 4M, 6M, and 8M, with

D=64, K=10, and Euclidean distance. The speedup results are

pretty consistent for different dataset sizes.

D. Accelerator Efficiency Analysis

To evaluate the efficiency of CHIP-KNN in supporting both

bandwidth-bound and resource-bound platforms, we analyze

the designs on both Alveo U200 and U280 cloud FPGAs.

1. For the U200 FPGA, our CHIP-KNN designs are bound

by its off-chip memory bandwidth. All the design points

utilize less than 55% of all available FPGA resource and

are thus not resource-bound. Based on the actual execu-

tion, our designs can utilize 67.1GB/s off-chip bandwidth,

which is about 94% of the peak effective off-chip memory

bandwidth (71.76GB/s) characterized in Section III-C.

2. For the U280 FPGA that has much higher off-chip band-

width from HBM, our CHIP-KNN designs are limited by

the FPGA resource and placement and routing constraints.

Based on the actual execution, our designs can utilize up to

296GB/s off-chip bandwidth, which is only about 70% of

the peak effective HBM bandwidth (422GB/s), and are thus

not bandwidth-bound. Our designs either already utilize

TABLE IV: Cycles to execute one tile in CHIP-KNN on U280,

with D=2, 4, ..., 128, N=4M, K=10, and Euclidean distance

Feature dimension Load Buf Dist Calc Top K Sort
2D 4,315 4,230 4,257
4D 2,247 2,096 2,105
8D 2,300 2,172 2,147

16D 2,264 2,193 2,102
32D 2,264 2,313 1,043
64D 2,247 2,027 1,568
128D 4,215 4,259 2,951

close to 70% of the FPGA resource or have to utilize less

resource due to placement and routing failures.

To better illustrate the efficiency of our CHIP-KNN designs

on the U280 FPGA and explain the speedup fluctuation

results in Section IV-C1, we further analyze those designs

with D=2, 4, ..., 128, N=4M, K=10, and Euclidean distance.

Table III summarizes the PE configuration generated from the

automation output, resource utilization, operating frequency,

execution time and bandwidth performance of the designs.

1) Resource Utilization: To pass the placement and routing,

in our design automation tool, we limit our designs to utilize

less than 70% of any resource (i.e., α = 70%). As shown in

Table III, all these designs are limited by the LUT resource.

For the designs with D=2, 4, and 8, their LUT utilization is

fairly close to 70%. For the designs with higher dimensions,

they are limited by the placement and routing issue and we

have to relax the target resource utilization, i.e., the α value.

For the design with D=16, we have to relax α to 65%; for the

designs with D= 32, 64, and 128, we have to relax α to 50%.

Table III also lists the number of PEs and the frequency of

each design, which is much lower than the target 300MHz. In

future work, we plan to further investigate these designs and

improve their placement and routing for better performance.

2) Bandwidth Utilization: Table III summarizes the band-

widths of our designs, which is calculated as the total dataset

size divided by the actual execution time. This bandwidth

decides the final performance of our CHIP-KNN designs.

It is affected by three factors: 1) buf size, which is about

128KB in all designs; 2) port width and 3) #PEs, which

vary in designs as shown in Table III. The design for D=16

achieves the highest bandwidth of 296GB/s, as it has 28

PEs and port width = 512bits. The designs for D=2

and D=128 achieve the lowest bandwidths of 98GB/s and

115GB/s, because they can only support 18 and 16 PEs, with

port width = 256bits. For these two designs, we find that the

design choice with port width = 512bits significantly limit

the number of PEs due to the placement and routing issue.

3) Performance Balancing: Table IV summaries the cycles

of all three stages—Load Buf, Dist Cal, and Top K Sort—
to execute a single tile (buf size = 128KB) in each PE on

Alveo U280 FPGA, with D=2, 4, ..., 128, N=4M, K=10, and

Euclidean distance. All the designs are pretty balanced. For

the designs with larger Ds, the Load Buf stage takes more

cycles, thus we relax the dist II for the Dist Calc stage;

and even though we set sort factor to 1, the Top K Sort
stage takes fewer cycles than the other two stages. For the

designs with smaller Ds, the Load Buf stage takes less

cycles and thus we have to increase the dist factor and

sort factor. All the automation output results—including

buf size, port width, dist II, dist factor, sort factor, #PEs,

and #tiles per PE—are also summarized in Table III.

V. RELATED WORK

A. KNN Acceleration on FPGA

HLS-based KNN acceleration. In [8], Song et al. presented

an HLS-C based KNN accelerator that is adaptive to all key

KNN parameters. It supports low-precision data representation

and PCA-based approximate KNN algorithm. However, their

design is not fully optimized and only uses 11.9% of the

available off-chip bandwidth. In [22], Liu implemented an

OpenCL-based KNN accelerator, which uses bitonic sort to

sort the nearest neighbors. However, they only tested their

design under small datasets and utilized 7% of the off-chip

bandwidth. In [9], Pu et al. implemented an OpenCL-based

KNN accelerator, which features a high-speed parallel sorting

algorithm based on bubble sort. However, their design only

supports a fixed KNN configuration and utilizes 11.1% of the

off-chip bandwidth. As summarized in Table V, we are the

first to optimize the memory access of KNN accelerators on

cloud FPGAs and can utilize 87.4% of the Alveo U200 DRAM

bandwidth and 64.3% of the Alveo U280 HBM bandwidth.

TABLE V: Bandwidth comparison of FPGA acceleration

Design BW
(GB/s)

[8] [22] [9]
Ours

on U200
Ours

on U280
Achieved BW 9.1 1.8 1.4 67.1 296
Theoretical BW 76.8 25 12.8 76.8 460
BW utilization 11.9% 7% 11.1% 87.4% 64.3%

Acceleration for KNN-based classifier system. In [10], Hus-

sain et al. developed an HDL-based KNN classifier to speed

up the ensemble classification on FPGA through dynamic

partial reconfiguration that achieves 5x speedup. However,

their design only supports small datasets that can be stored

on chip using FIFOs. In [23], Vieira et al. proposed a flexible

HDL-based streaming KNN classifier design for embedded

FPGA-SoCs. However, they did not exploit the abundant

parallelism in the distance calculation and sorting, nor did they

fully optimize the off-chip memory access. In [24], Samiee

et al. proposed a reduced-rank local distance metric for the

KNN classifier mainly to improve the classification accuracy.

In [25], Danopoulos et al. accelerated the vector indexing stage

of an approximate KNN method used in the Facebook artificial

intelligence similarity search framework. This is orthogonal to

our work where we focus on the exact KNN algorithm.

B. KNN Acceleration on GPU

In [26], Matsumoto et al. used the GPU to accelerate the

distance calculation and the CPU to perform the sorting. Thus,

their performance is limited by the sorting stage. In [27], [28],

Garcia et al. developed several CUDA implementations of the

KNN kernel and recently updated their GitHub source code in

2018 (https://github.com/vincentfpgarcia/kNN-CUDA). Their

implementation assumes a batch of input queries are processed

concurrently. For the distance calculation, they exploit the

abundant parallelism among different queries, search space

points, and feature dimensions. For distance sorting, they only

exploit the parallelism among queries; the sorting remains

sequential within the processing for each query. We have

run their code on the Nimbix cloud instance with the 14nm

Nvidia V100 GPU [29], with a rental price of $3.05/hour

similar to that of Alveo U200 and U280 FPGAs. Due to

space constraints, we only present the geometric mean of the

results across all configurations listed in Table I. As shown

in Table VI, on average, CHIP-KNN on Alveo U280 FPGA

achieves a 1,144x latency speedup over the GPU design when

processing a single query. On the other hand, CHIP-KNN on

Alveo U280 FPGA achieves a 28% throughput of the GPU

design when processing a batch of 4,096 queries.

TABLE VI: Latency and throughput comparison for CHIP-

KNN on U280 FPGA and GPU design [27], [28] on V100

Latency 1,144x faster than GPU Throughput 28% of GPU

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed and implemented a config-

urable and high-performance KNN accelerator called CHIP-

KNN. Given a user configuration of key KNN parameters

and a target cloud FPGA platform, our tool can automatically

generate the optimal KNN accelerator design, which reaches

either the off-chip memory bandwidth limit or the FPGA

resource limit. To optimize the off-chip memory access, we

have carefully tune the memory access port width, consecutive

data access size, and concurrent number of memory banks.

We also build an analytical performance model to guide our

automation tool to find the optimal design with balanced

execution of all stages. Finally, we have conducted a wide

range of experiments on the Nimbix cloud. Compared to the

16-thread CPU version, on average, we achieve 7.5x and 19.8x

performance speedup, and 6.1x and 16.0x performance/dollar

improvement, on the Xilinx Alveo U200 and U280 FPGAs. In

future work, we plan to investigate the place-and-route issue

of CHIP-KNN on the Alveo U280 FPGA. This work is open-

sourced at: https://github.com/SFU-HiAccel/CHIP-KNN.

ACKNOWLEDGEMENTS

We acknowledge the support from NSERC Discovery Grant

RGPIN-2019-04613, DGECR-2019-00120, Alliance Grant

ALLRP-552042-2020, COHESA (NETGP485577-15), CWSE

PDF (470957), and RGPIN341516; Canada Foundation for

Innovation John R. Evans Leaders Fund and British Columbia

Knowledge Development Fund; Simon Fraser University New

Faculty Start-up Grant; Huawei, Xilinx, and Nvidia.

REFERENCES

[1] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[2] X. Wu, V. Kumar, R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. Mclachlan, S. K. A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach,
D. Hand, and D. Steinberg, “Top 10 algorithms in data mining,”
Knowledge and Information Systems, vol. 14, pp. 1–37, 12 2007.

[3] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor
search,” SIGMOD Rec., vol. 27, no. 2, p. 154–165, Jun. 1998.

[4] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based
approach in classification,” in International Conference on Ontologies,
Databases and Applications of Semantics (ODBASE 2003). Switzer-
land: Springer, 2003, pp. 986–996.

[5] B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-
joins in large relational databases (almost) for free,” in 2010 IEEE 26th
International Conference on Data Engineering (ICDE 2010), 2010, pp.
4–15.

[6] V. Hyvonen, T. Pitkanen, S. Tasoulis, E. Jaasaari, R. Tuomainen,
L. Wang, J. Corander, and T. Roos, “Fast nearest neighbor search
through sparse random projections and voting,” 2016 IEEE International
Conference on Big Data (Big Data), Dec 2016.

[7] V. T. Lee, A. Mazumdar, C. C. del Mundo, A. Alaghi, L. Ceze, and
M. Oskin, “Application codesign of near-data processing for similarity
search,” in 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2018, pp. 896–907.

[8] X. Song, T. Xie, and S. Fischer, “A memory-access-efficient adaptive
implementation of knn on fpga through hls,” in 2019 IEEE 37th
International Conference on Computer Design (ICCD), Nov 2019, pp.
177–180.

[9] Y. Pu, J. Peng, L. Huang, and J. Chen, “An efficient knn algorithm
implemented on fpga based heterogeneous computing system using
opencl,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2015, pp. 167–170.

[10] H. M. Hussain, K. Benkrid, and H. Seker, “An adaptive implementation
of a dynamically reconfigurable k-nearest neighbour classifier on fpga,”
in 2012 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), June 2012, pp. 205–212.

[11] Nimbix, “Accelerate your workflows with xilinx alveo accelerator cards
in the cloud,” 2020, last accessed July 28, 2020. [Online]. Available:
https://www.nimbix.net/alveo

[12] Xilinx, “Alveo u200 and u250 data center accelerator cards data sheet,”
2020, last accessed July 28, 2020. [Online]. Available: https://www.
xilinx.com/support/documentation/data\ sheets/ds962-u200-u250.pdf

[13] ——, “Alveo u280 data center accelerator cards data sheet,”
2020, last accessed July 28, 2020. [Online]. Available: https:
//www.xilinx.com/support/documentation/data sheets/ds963-u280.pdf

[14] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” J. ACM, vol. 45, no. 6, p. 891–923, Nov. 1998.

[15] S. Arya and D. M. Mount, “Ann: library for approximate nearest
neighbor searching,” in Proceedings of IEEE CGC Workshop on Com-
putational Geometry, 1998, pp. 33–40.

[16] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in In VISAPP International Confer-
ence on Computer Vision Theory and Applications, 2009, pp. 331–340.

[17] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through
on-chip memory restructuring for hls,” in Proceedings of the 54th Annual
Design Automation Conference 2017, ser. DAC ’17. New York, NY,
USA: Association for Computing Machinery, 2017.

[18] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085, 2019.

[19] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding
performance differences of fpgas and gpus,” in 26th IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2018, Boulder, CO, USA, April 29 - May 1, 2018.
IEEE Computer Society, 2018, pp. 93–96.

[20] J. Cong, Z. Fang, Y. Hao, P. Wei, C. H. Yu, C. Zhang, and P. Zhou, “Best-
effort FPGA programming: A few steps can go a long way,” CoRR, vol.
abs/1807.01340, 2018.

[21] Xilinx, “Vitis unified software platform,” 2020, last accessed
July 28, 2020. [Online]. Available: https://www.xilinx.com/products/
design-tools/vitis/vitis-platform.html#development

[22] L. Liu, “Acceleration of k-Nearest Neighbor and SRAD Algorithms
Using Intel FPGA SDK for OpenCL,” Master’s thesis, University of
Windsor, 2018.

[23] J. Vieira, R. P. Duarte, and H. C. Neto, “knn-stuff: knn streaming unit
for fpgas,” IEEE Access, vol. 7, pp. 170 864–170 877, 2019.

[24] A. Samiee, Y. Huang, and Y. Bai, “Frldm: Empowering k-nearest
neighbor (knn) through fpga-based reduced-rank local distance metric,”
in 2018 IEEE International Conference on Big Data (Big Data), Dec
2018, pp. 4742–4746.

[25] D. Danopoulos, C. Kachris, and D. Soudris, “Fpga acceleration of
approximate knn indexing on high- dimensional vectors,” in 2019 14th
International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), July 2019, pp. 59–65.

[26] T. Matsumoto and M. L. Yiu, “Accelerating exact similarity search
on cpu-gpu systems,” in 2015 IEEE International Conference on Data
Mining, Nov 2015, pp. 320–329.

[27] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, June 2008, pp. 1–6.

[28] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest neigh-
bor search: Fast gpu-based implementations and application to high-
dimensional feature matching,” in 2010 IEEE International Conference
on Image Processing, Sep. 2010, pp. 3757–3760.

[29] Nvidia, “Nvidia v100 tensor core gpu,” 2020, last accessed July 28,
2020. [Online]. Available: https://www.nvidia.com/en-us/data-center/
v100/

