
Reconfigurable Accelerator Compute Hierarchy:
A Case Study Using Content-Based Image Retrieval

Nazanin Farahpour∗, Yuchen Hao∗, Zhenman Fang†, Glenn Reinman∗
∗University of California, Los Angeles †Simon Fraser University, Canada

{nazanin, haoyc, reinman}@cs.ucla.edu zhenman@sfu.ca

Abstract—The recent adoption of reconfigurable hardware
accelerators in data centers has significantly improved their
computational power and energy efficiency for compute-intensive
applications. However, for common communication-bound ana-
lytics workloads, these benefits are limited by the efficiency of
data movement in the IO stack. For this reason, server architects
are proposing a more data-centric acceleration scheme by moving
the compute elements closer to the data. While prior studies focus
on the benefits of Near Data Processing (NDP) solely on one level
of the memory hierarchy (one of cache, main memory or storage),
we focus on the collaboration of NDP accelerators at all levels and
their collective benefits in accelerating an application pipeline.

In this paper, we present a Reconfigurable Accelerator
Compute Hierarchy (ReACH) that combines on-chip, near-
memory, and near-storage accelerators. Each memory level has
a reconfigurable accelerator chip attached to it, which provides
distinct compute and memory capabilities and offers a broad
spectrum of acceleration options. To enable effective acceler-
ation on various application pipelines, we propose a holistic
approach to coordinate between the compute levels, reducing
inter-level data access interference and achieving asynchronous
task flow control. To minimize the programming efforts of using
the compute hierarchy, a uniform programming interface is
designed to decouple the ReACH configuration from the user
application source code and allow runtime adjustments without
modifying the deployed application. We experimentally deploy
a billion-scale Content-Based Image Retrieval (CBIR) system on
ReACH. Simulation results demonstrate that a proper application
mapping eliminates unnecessary data movement, and ReACH
achieves 4.5x throughput gain while reducing energy consump-
tion by 52% compared to conventional on-chip acceleration.

I. INTRODUCTION

Since power and energy efficiency become the primary mo-
tivators in today’s data centers, the leading industry companies
are shifting toward incorporating FPGAs (Field-Programmable
Gate Array) into their servers. Microsoft and Amazon have
pioneered the large-scale deployment of FPGAs in cloud
services [1], [2] and nowadays FPGA is becoming a stan-
dard component of the cloud infrastructures. Therefore, it is
crucial for server architects to choose the best server-FPGA
integration that matches the server workload, memory and IO
requirements, and power budget.

A server workload can be comprised of both compute-
intensive and memory-bound applications. In fact, it is com-
mon to have variations in compute and memory requirements,
even within different execution phases of a single applica-
tion. Content-Based Image Retrieval (CBIR), which identifies
relative images from large-scale image databases using visual
content, is one example of such an application [3], [4]. A large

number of data analytics applications like CBIR have working
sets that span several hundreds of gigabytes of data. These
applications often scan, join, and summarize large volumes of
data, and their throughput is crucial to user experience [5].

As we present later in section VI, using conventional CPU-
side FPGA acceleration on these applications would reduce
the run time and compute energy, but the total energy savings
would be limited by data movement cost (energy spent on
the memory hierarchy and interconnects). To give an example,
Figure 8 shows the energy distribution of a CBIR system using
on-chip FPGA acceleration. The energy breakdown shows that
after FPGA acceleration, 79% of the total remaining energy
cost is due to data movement.

Another important limitation in conventional systems is the
bandwidth gap between the host and attached memory/disk
modules. Modern commodity servers have relatively sparse
off-chip memory bandwidth and limited IO interface band-
width. A typical Xeon-based, 2U sized chassis features 4 mem-
ory channels per socket and each channel is shared between
up to 3 dual inline memory modules (DIMMs). The same
problem exists in the IO interface. The host-side PCIe Gen 3
x16 bandwidth to the storage hierarchy is theoretically 16GB/s,
which downgrades to about 12GB/s due to the inefficiency in
the IO software stack [6]. Since the number of SSD slots in a
typical host server could be up to 16 and a single disk latency
and bandwidth is continuously improving, the performance
bottleneck is moving towards the host-side IO interface. The
bandwidth gap is even wider in data centers with disaggregated
storage servers that communicates volumes of data through the
network between the host server and storage servers. These
constraints hinder the effectiveness of on-chip accelerators on
communication-bound data analytics workload, where these
accelerators are only suitable to perform part of the work and
must coordinate with CPU, memory modules, IO stack and
network interface in the system for data movement.

To overcome these issues, prior studies have proposed to
deploy accelerators near the data medium to distribute the
computation into memory or disk modules, so as to both
exploit the available internal bandwidth and avoid the data
movement across chip boundaries [7], [8], [9], [10], [11],
[12]. Unfortunately, a large set of existing research has solely
focused on only one level of the memory hierarchy (cache,
main memory or storage), while disregarding the potential
benefits of having multiple levels of near data processing for
communication-bound application pipelines.

In this work, we present ReACH, a Reconfigurable
Accelerator Compute Hierarchy that combines on-chip, near-
memory, and near-storage accelerators, spanning all levels of
the conventional memory hierarchy. Each acceleration level
provides distinct compute and memory capabilities, offering a
broad spectrum of acceleration options. As characterized in the
prior work [13], on-chip cache-coherent accelerators are more
suitable for compute-intensive workloads or applications that
require frequent interactions with the host CPU. Near-memory
accelerators are more suitable for parallelizable tasks with a
large memory footprint and a high bandwidth requirement.
Near-storage accelerators are more suitable for streaming-like
applications with simple tasks that are IO-intensive and heavily
rely on storage bandwidth.

To enable effective acceleration on various application
pipelines, we propose a hardware-based global accelerator
manager (GAM) that serves as a master to all accelerator
levels. Rather than relying on CPU cores to interact with
accelerators directly, ReACH opts for a more centralized
task scheduling and control flow, assuming the accelerators
across the memory hierarchy are coarse-grained and can run
for a long time. The hardware and software co-design of
GAM enables programmers to use conventional synchronous
programming, while handling asynchronous task flow in the
compute hierarchy. ReACH provides hardware support for data
partitioning to limit the inter-task memory interference and
pipelines the data movement and processing in all levels of
the compute hierarchy.

We experimentally deploy a billion-scale CBIR system on
ReACH as a case study. Based on our simulation results,
a proper application mapping significantly reduces the data
movement and achieves 4.5x throughput and 52% energy
improvements. The main contributions of this paper are:
1. Propose a compute hierarchy that combines on-chip, near-

memory, and near-storage accelerators (Section II).
2. Design a hardware-based global accelerator manager for

coordinating compute levels, reducing inter-task memory
access interference, and providing asynchronous task flow
control (Section II-D).

3. Introduce a uniformed library-based programming interface
that decouples the user application from the system config-
urations of the ReACH for seamless use of the hierarchy
(Section III).

4. Demonstrate a real-world application example that could
benefit from the hierarchy and quantify its performance
and energy gains based on cycle-accurate simulation (Sec-
tion VI).

II. OVERVIEW OF REACH ARCHITECTURE

A high-level overview of our compute hierarchy is depicted
in Figure 1. ReACH includes multiple cores, an on-chip global
accelerator manager (GAM) and reconfigurable accelerators
attached to each level of the memory hierarchy. While our
compute engines are based on FPGA accelerators, the compute
hierarchy is not dependent on a specific type of accelerator
logic: they could be, for example, special processor cores,

On-chip

FPGA DRAM

GAM FPGA

SSDFPGA

CoresCores Cache

Near-Memory

Near-Storage

User Application

ReACH Runtime Library
ACC

Templates

OS+ HW Drivers

ReACH Config

Fig. 1. Overview of ReACH hardware and software stack.

ASIC accelerators, or CGRAs (coarse-grained reconfigurable
architectures). This work focuses on FPGAs since they provide
more flexibility than ASICs and CGRAs.

FPGA modules in each compute level have their own
specific set of resources based on the power/area constraints
of the attached memory level. While the on-chip accelerator
has the largest area and most resources (e.g., DSP, FF, BRAM,
LUT), near-memory accelerators have to use a more power-
efficient embedded FPGA module. Even though a single
near-memory accelerator is not as powerful as an on-chip
accelerator, the shortcomings are balanced by each DIMM
having its own dedicated near-memory FPGA module. As a re-
sult, near-memory accelerators can provide higher aggregated
computation capability and bandwidth from main memory
to accelerators. The near-storage FPGA module has similar
power/thermal constraints, but in addition to an embedded
FPGA module, it also requires a small dedicated DRAM buffer
to act as a cache for accelerator parameters, to limit disk
accesses and exploit the parameters’ reuse ratio.

With careful hardware/software co-design in the GAM,
ReACH can automatically handle the execution flow in the
compute hierarchy and asynchronously pipeline the data trans-
fer and execution between compute levels, while allowing
users to write host applications with traditional synchronous
coding style. The detailed description of each compute level
and GAM is presented in the following subsections. The
software infrastructure will be presented in Section III.

A. On-chip Accelerator

Figure 2 illustrates our on-chip accelerator with CPU cores
and GAM, all tied together with a high-bandwidth network-
on-chip (NoC), which provides a cache-coherent interface be-
tween all elements and main memory. To enable closer logical
integration to the host cores, virtual memory capabilities are
supported by implementing TLBs and page table walkers for
the accelerator [14].

On-chip FPGA accelerators often have higher clock fre-
quency and larger area to work with in order to keep up
with the host cores and cache hierarchy, as is the case in
Xilinx Versal ACAP [15]. Therefore, it can achieve higher
performance by designing larger FPGA kernels and utilizing
the high-bandwidth access to cache. However, once the work-
ing set exceeds the on-chip cache capacity, the acceleration is
limited by memory access latency and off-chip bandwidth.

DDR HBM SSD Ethernet

Network-on-Chip

Last-Level-Cache

CPU Cores Programmable Fabric

DMA SPM

PCIe

C

C

GAM

C C

C

Memory Controller

Fig. 2. Overview of on-chip accelerator and GAM.

Programmable
Fabric

Memory Access Filter

Configuration Filter

DIMM Connector

Memory Network Connector

A
IM

B
u

s

DIMM

ACC

DIMM

ACC

Host MC

memory networkAIMBus

...

Fig. 3. The accelerator-interposed memory (AIM) architecture with the
AIMbus which enables inter-DIMM communication.

B. Near-Memory Accelerator

The performance of on-chip accelerators are bounded by
the main memory bandwidth when data have to be fetched
from off-chip and little locality can be exploited. Near-memory
accelerators overcome the limit of narrow memory channels
and achieve low-latency and high-bandwidth memory access
by moving the compute engine closer to the main memory. Our
design is based on accelerator-interposed memory (AIM) [10].
As shown in Figure 3, an AIM module is introduced to
interface with the memory network and the commodity DRAM
DIMM, making it a noninvasive design to existing components
in the system. Each AIM module contains 1) an embedded
FPGA accelerator that can be customized and controlled by the
GAM, 2) an AIMbus interface that allows inter-DIMM com-
munication, 3) a configuration filter for accelerator commands
coming from the memory channel, and 4) a memory access
filter to forward memory responses to the local accelerator,
a remote accelerator via AIMbus, or the host CPU via the
memory channel.

This near-memory accelerator is generally treated as a co-
processor and executes only when an application kernel is
launched by the host CPU on the AIM module. Once a
kernel is launched, the host memory controller hands over the
control of a DIMM to the AIM module connected to it. The
AIM module effectively enforces a closed-row policy when
accessing the DRAM, so that the host memory controller can
assume all rows are in precharge state when the control is
handed back. This minimizes the amount of synchronization
that takes place between the host CPU and AIM modules,
which is vital to the efficiency of near-memory acceleration.

As DRAMs and the memory channels are typically de-
signed to offer high capacity and low-latency, near-memory

NVM Ctrl
Channel 0

...

NVM Ctrl
Channel n

...

...

FP
G

A
 In

te
rf

ac
e eCPU

SRAM

DRAM buffer

DRAM
controller

SSDACC

H
os

t I
nt

er
fa

ce

Programmable
Fabric

SPM

DMA

Access
filter

Pass-through
logic

D
R

A
M

 b
uf

fe
r

Fig. 4. Internal architecture of the near-storage accelerator.

accelerators must avoid complex designs to work with the
tight timing and power requirements of the DRAM standard.
As a result, the near-memory accelerators are less powerful
than the on-chip ones, but have lower memory access latency
and can achieve higher aggregated bandwidth through parallel
processing using multiple instances.

C. Near-Storage Accelerator

The internal bandwidth and latency of storage (disks) have
been improved more than two orders of magnitudes in recent
years and emerging non-volatile memory technologies have
the potential to achieve near DDR bandwidth and latency.
However, the host/disk IO interconnect throughput has not
been improved at the same rate and the system bottleneck is
moved from disk to IO interconnect. This gap becomes even
larger as we scale up the number of SSD units in a system,
each with more flash channels.

Instead of improving the I/O interconnect throughput to
bridge the gap, we move compute engines closer to the storage
by connecting an FPGA accelerator to each SSD unit via a
local PCIe link. Figure 4 illustrate the internal architecture
of our near-storage accelerator. In addition to the user ac-
celerator function unit—the programmable logic, DMA and
SPM (scratchpad memory) units—the FPGA accelerator has
a host interface to receive accelerator commands, an FPGA-
SSD interface to transfer data from/to the local SSD unit, and
a control logic that filters the conventional disk access from
accelerator commands. The pass-through logic allows the IO
requests intended for the disk to pass with minimal overhead.

Similar to near-memory accelerators, near-storage accel-
erators are treated as coprocessors attached to the storage.
They are designed to handle an entire computation kernel,
eliminating the need for costly synchronizations with the host
CPU. The FPGA chosen here must work with the cost and
power budget of the server with respect to the number of SSD
units in the system. The FPGA requires a private DRAM buffer
to limit the number of IO access to the attached storage unit.
Near-storage accelerators work the best for applications with
reduction operations, where the data size is ideally reduced by
orders of magnitude before data are transferred to the upper
levels of the memory hierarchy.

D. Global Accelerator Manager

To efficiently coordinate hardware accelerators in the com-
pute hierarchy, free CPU cores from managing resources, and
avoid costly operating system context switches, we propose

free ACC ID Thread
ID

Current Task ID Estimated
wait time

Output
Stream IDs

Waiting
Task list

0 On-chip 1 Conv-Relu1 480 11 Conv-Relu2

1 NM0

1 NM1

1 …

1 NS3

ACC ID SW thread/ Task
ID

Input
buffs

Output
buffs

Dependency

Accelerator Progress Table

ACC command packets

(a) (b)

Status queue

check

Status packets

ACC ID Finished New wait time Stream ID/tail address

ACC Status packets

Task
Dispatch

…

On-chip

NM0

NM1

NS3

Job queue

(d) (e)

Scheduling Queue

Buffer Table

(c)

Buffer ID Address boundaries

Fig. 5. Global Accelerator Manager (GAM) micro-architecture.

to use an on-chip hardware-based global accelerator manager
(GAM) to 1) receive job requests for accelerators from cores;
2) distribute tasks within each job to available accelerators; 3)
track the tasks currently running on or waiting for accelerators,
their start time and estimated execution time; 4) initiate data
transfers between dependent tasks; and 5) interrupt the host
core when the requested job is completed. Figure 5 shows the
micro-architecture of GAM that enables these capabilities.

As shown in Figure 5, GAM features a simple scheduling
queue, a progress tracking table, a small buffer table and
TLB, and a status queue interfacing with rest of the system.
The ReACH host-side runtime environment creates a series
of job requests according to the job description of the host
application. These job requests are sent to GAM in form of
ACC (accelerator) command packets through the GAM driver
(5a). GAM breaks each job into multiple tasks (called task
groups) that may or may not be assigned to the same compute
level. For instance, for a CNN (convolutional neural network)
inference job on a batch of query images, the job request
is actually a series of tasks, each associated with one of the
Conv-ReLu (convolution layer and rectified linear unit), Pool
(max pooling layer) or FCN (fully connected layer) layers
of the CNN model. All tasks in a task group share the same
software thread id, but not necessarily the same target compute
level. As an example, all layers of the inference job could
be assigned to on-chip accelerator, or it could be divided
to run all convolution layers using on-chip accelerator and
all fully-connected layers using the near-memory accelerators.
Each job goes through the GAM scheduling queue (5d) and
gets assigned to its target platform’s dedicated queue. And its
input/output buffers are allocated and the addresses are stored
in the buffer table (5c).

With multiple levels of accelerators, the GAM keeps track
of the running accelerators using a progress table (5e). When
a target hardware is set free from a previous task, GAM
invokes the next task from the queue by sending the command
request to the target hardware. GAM acts as the master to
all accelerators. Since memory/storage modules cannot send
acknowledgement to GAM upon finishing a task, it is GAM’s
responsibility to send status request packets (5b) to each

running accelerator when the estimated runtime of a task
finishes. If a task is done, the returned status packet will have
the memory region address for the output of the task to be
forwarded to input buffers of all dependent tasks through DMA
requests. If the task is not finished, a new wait time value will
be updated in the progress table.

If a job involves multiple compute levels, the GAM breaks
the job into tasks to be assigned to different levels and
makes sure results produced by one compute level can be
fed to other levels. For near-memory accelerators, the GAM
forces a write back in order to send the input data that were
previously cached to the accelerators in memory. For near-
storage accelerators, the GAM initiates PCIe transfer to send
input data to the SSD-attached accelerators.

The GAM enables coarse-grained pipelining between differ-
ent compute levels by allowing accelerators at different levels
to work on different tasks at the same time. The accelerator
tasks are intentionally designed to be small enough to exploit
task-level parallelism but large enough to amortize the data
transfer overhead. Also, the GAM assigns tasks from the next
job to accelerators without waiting for all the tasks in the
previous job to complete when there is no data dependency.
This reduces idle time and improves the pipeline efficiency.

III. PROGRAMMING SUPPORT FOR REACH

A. Software Infrastructure

The top part of Figure 1 presents the software stack of
ReACH. To minimize the programming effort of using the
compute hierarchy, a library-based accelerator programming
model inspired by [16] is provided. For any new accelerator,
once a compute kernel is carefully designed and generated
for a specific compute level, the FPGA bitstream alongside a
kernel-specific driver and data flow graph would be stored
as an accelerator template. The ReACH runtime library
provides a comprehensive set of pre-optimized templates that
are ready to deploy on FPGA devices. The library also has
general accelerator APIs that show a uniform view of all FPGA
resources regardless of their compute-level.

Listing 1 shows a snippet of ReACH host APIs written
in C++. An application developer could use these APIs and

optimized templates to write a ReACH config file and instan-
tiate a meta accelerator, consisting of on-chip, near-memory
and near-storage accelerators and all the required buffers and
communication streams for it. These APIs enable users to 1)
register an accelerator at each compute level, 2) create buffers
at each level with data initialized from the file system, and
3) create buffers that can be transferred from source level to
destination level using broadcast (one to all), collect (all to
one), and pair (one to one) patterns.
1 enum Level {OnChip, NearMem, NearStor, CPU}
2 enum StreamType {BroadCast, Collect, Pair}
3 ReACH::ACC RegisterAcc(string acc_template, Level l)
4 ReACH::Buffer<typename T> CreateFixedBuffer(string

real_path, Level dst, int size)
5 ReACH::Stream<typename T> CreateStream(Level src, Level

dst, StreamType type, int size, int depth)

Listing 1. A Snippet of ReACH Host APIs (ReACH.h)

1 #include <ReACH.h>
2 struct ImgData {...};
3 struct TopK {...};
4 ReACH::Buffer<float> vgg_param =

CreateFixedBuffer("./vgg16_param", OnChip, size);
5 ReACH::Buffer<float> db0 =

CreateFixedBuffer("./feature_db0",NearStor, DB0_size);
6 ReACH::Buffer<float> db1 =

CreateFixedBuffer("./feature_db1",NearStor, DB1_size);
7
8 ReACH::Stream<ImgData> Input =
9 CreateStream(CPU, Onchip, Pair, Img_size*Batch, depth);

10 ReACH::Stream<float> features =
11 CreateStream(OnChip, NearStor, Broadcast,

feat_size*batch, depth);
12 ReACH::Stream<TopK> Result =
13 CreateStream(NearStor, CPU, Collect,

batch*K*sizeof(int),depth);
14
15 ReACH::ACC cnn = RegisterAcc("VGG16-VU9P", OnChip);
16 cnn.setArgs(0,Input);
17 cnn.setArgs(1,vgg_param);
18 cnn.setArgs(2,Features);
19 ReACH::ACC knn0 = RegisterAcc("KNN-ZCU9", NearStor);
20 knn0.setArgs(0,Features);
21 knn0,setArgs(1,db0);
22 knn0.setArgs(2,Result);
23 ReACH::ACC knn1 = RegisterAcc("KNN-ZCU9", NearStor);
24 knn1.setArgs(0,Features);
25 knn1.setArgs(1,db1);
26 knn1.setArgs(2,Result);

Listing 2. ReACH Configuration (config.h)

Listing 2 shows an example config file for ReACH that
instantiates a simplified CBIR meta accelerator using only
on-chip and near-storage accelerators. ReACH config file
contains the initial setup of the application for ReACH, such as
registration of physical accelerators (ReACH::ACC, lines 15,
19, and 23), allocation of each accelerator’s memory region
(ReACH::Buffer, lines 4-6), communication buffers between
compute levels (ReACH::Stream, lines 8-13), and binding
between the accelerator and its buffers (setArgs API, lines
16-18, 20-22, and 24-26). The main goal in ReACH is to
limit data movement across the hierarchy during runtime of
an application pipeline. So, it is important to formally define
the fixed regions of the memory space where data would
be sedentary and regions of the address space to be defined
as communication buffer, so the intermediate result could be
stored. The programming style of the config file is similar to
OpenCL standard, where users can create buffers and streams,

register accelerators, and associate the buffers and streams with
accelerator kernel arguments.

Listing 3 shows the host code to describe the flow of the
application during run time using accelerator-specific APIs.
Users simply need to call corresponding APIs to execute
the accelerator and initiate the data transfer. We decided
to separate ReACH configurations from the application host
source code, because it allows the user application to (1) be as
abstract as possible, (2) be portable across different ReACH
systems and (3) allow GAM to balance the hardware resources
during runtime. The ReACH runtime library also contains a
GAM driver and a user interface that can translate the template
execute function into communication packets to be sent to
GAM. The kernel synthesis report—which includes pipeline
initiation interval, depth and iterations, and frequency—is
also used to update the GAM accelerator table with timing
estimates of the new kernel. For an arbitrary application
pipeline, the programmer could utilize the APIs to write codes
with software pipelining of accelerators. During runtime of
the application, the accelerators could be invoked using the
function execute from the API. The core would offload the
work to GAM to be scheduled for an available accelerator.
1 #include <config.h>
2 while (Input.enqueue(new_query_batch)){
3 cnn.execute(threadId);
4 Features.broadcast();
5 knn0.execute(threadId);
6 knn1.execute(threadId);
7 Result.collect();
8 //process(Result.dequeue());
9 }

Listing 3. Host Application Accelerator Calls (host.cpp)

B. GAM Scheduling
Based on the ReACH config file, the runtime library calls

the GAM driver to set up the memory regions for on-chip
and near-memory accelerators. Initially the physical address
space range is shared between CPU, on-chip accelerator and
the near-memory accelerators. Since near-memory accelera-
tors block accesses to their attached DIMMs during kernel
execution time, GAM reorganizes the memory space between
the three components, by modifying the memory controller
(MC) registers. The MCs that are connected to near-memory
channels will divide the data in tile granularity specified
by accelerator template, while the MCs that are connected
to CPU/on-chip accelerator will interleave data with cache
granularity for higher aggregated bandwidth to chip. The
reorganization and isolation of the memory space for both
compute levels helps decrease the access interference and give
both accelerators their bandwidth requirements. The stream
buffer defined for communication between two compute levels
is actually a pair of queues allocated in the memory space of
both source and destination compute levels. If the stream is
broadcast type, the destination queue needs to be duplicated
for each accelerator instance of that compute level. If the
stream is collect type, all the source accelerators need to have
a copy of the queue. Only GAM could request enqueue and
dequeue operations for the stream buffers.

CPU GAM

Cache
On-chip

Acc

PCIe DMA

Mem Ctrls
Near-

memory
Acc

DIMM

Near-
storage

Acc
SSD

1

3

2a

2b

2c

Fig. 6. Scheduling of ReACH through GAM.

Figure 6 describes what happens in ReACH configuration:
1. ReACH runtime library sends the accelerator templates and

buffer descriptions to GAM.
2. GAM detects the accelerator type and performs correspond-

ing operations based on the compute level.
a) On-chip Acc: GAM launches the required kernel into
on-chip accelerator, update its table with the acc ID. It also
sends DMA requests to load the required data (in buffers
or streams) by on-chip accelerator into DRAM region for
CPU, with high interleaving among channels. The on-chip
accelerator later accesses the data via the cache hierarchy.
b) Near-memory Acc: GAM launches kernel into near-
memory modules by writing into their configuration filter. It
also updates the memory interleaving based on the tile size
of the kernels. Finally, GAM sends DMA requests to load
the required data by near-memory accelerators and divides
it between DIMMs; if the source data of a stream is in
cache, GAM further forces a cache write back to memory.
c) Near-storage Acc: GAM launches kernel into near-
storage modules by a user-defined NVMe command. It also
receives the meta-data of storage files that are defined as
fixed buffers of the accelerator; for those stream data that
are in memory, GAM forces the data write back to storage.

3. After updating the ACC table with empty task queues,
GAM acknowledges the CPU that the data and accelerators
are ready to receive tasks.

IV. CASE STUDY: CBIR OVERVIEW

Content-based image retrieval (CBIR) identifies relevant im-
ages from large-scale image databases based on the represen-
tation of visual content, and has attracted increasing attention
in recent two decades. We use CBIR as an application example
where moving computation closer to data is vitally important.
In this section, we present the challenges of implementing
the online pipeline of CBIR and how mapping it to compute
hierarchy overcomes those challenges.

A. Application Description

The application pipeline of CBIR is shown in Figure 7.
Feature extraction. Visual features within an image are often
extracted and packed into a fixed-length vector for image rep-
resentation. While SIFT and SURF based representations are
commonly studied and adopted in early CBIR systems [17],
the focus of recent studies have shifted to representations
produced by deep neural network (DNN). Several studies [18],
[19], [20] have shown that DNN-based representations can

On-chip Near-memory Near-storage

Fig. 7. The CBIR pipeline and its optimized deployment on ReACH.

significantly improve the recall accuracy on image retrieval
benchmarks. In our implementation, we extract the feature
vector from images using the VGGNet [21] neural network
and PCA (principal component analysis) compression with a
dimensionality (D) of 96. We assume user query inputs are
sufficiently frequent for batched processing in order to improve
the throughput of the system.
Short-list retrieval. To avoid exhaustive search on billion-
scale databases, state-of-the-art CBIR systems extract a short-
list of clusters that correspond to the centroids that are the clos-
est to the query. These centroids are data points produced using
clustering methods such as kd-trees or k-means during the off-
line stage, so that the search space can be pruned at query time.
Specifically, we compute the distances ‖q−Cm‖ between the
query and the centroids. Let us denote by m1,m2, ...,mM

indices of M centroids that are produced by the indexing step
during the off-line stage.

dist[m] = ‖q−Cm‖2 = ‖q‖2+‖Cm‖2−2〈q, Cm〉,m = 1, ...,M
(1)

Note that the term ‖Cm‖2 in the decomposition can be pre-
computed, stored in DRAM and reused for all queries. Also,
the term ‖q‖2 can be reused within each query. Therefore,
the bottleneck of this step is the evaluation of matrix-matrix
multiplication 〈QB×D, CD×M 〉, where Q is the batch (B) of
queries and C is the matrix representation of centroids pre-
loaded in columnar fashion. We then perform addition of ‖q‖2
and ‖Cm‖2, and partial sorting of the dist array to produce
the short-list for the query q.
Rerank. After short-list retrieval, we traverse the clusters and
collect data points from these clusters to form a candidate list.
Rerank computes the distances between the query and the data
points within this candidate list. For both short-list retrieval
and rerank steps, we use the square of Euclidean distance to
measure the similarity between data points defined as:

‖p− q‖2 = (p1 − q1)
2 + (p2 − q2)

2 + ...+ (pn − qn)
2 (2)

Since short-lists are produced per query, the likelihood of
different queries sharing the same clusters is small and thus
batched processing is not applicable for most cases. So, the
major computation in this step is vector-matrix multiplications.
Lastly, a partial sorting on the computed distances is required

TABLE I. AN OVERVIEW OF MEMORY AND COMPUTE REQUIREMENTS OF
EACH CBIR PIPELINE STAGE

Memory Requirement Computation Requirement
Feature
extraction

552MB, 11.3MB if compressed [23]
Neural network model parameters

High
Convolutional neural network

Short-list
retrieval

∼2.2GB
Cluster centroids and cell info

Medium
Non-square matrix multiplication

Rerank ∼355GB
1 billion feature vectors

Low
K Nearest Neighbors

Reverse
lookup

200TB - 2PB
1 billion images

Very low
Database access

to produce the K-nearest data points. To return the correspond-
ing K-nearest images to the user, a reverse lookup in the image
database is performed using the indices from the rerank results.

Billion-scale CBIR applications pose serious challenges on
conventional CPU architectures and memory hierarchies. On
one hand, exhaustive search on huge dataset that far exceeds
the capacity of DRAM is impractical because (1) comparing
against all data points stresses the overall throughput and
latency; (2) the time and energy spent on bringing data to
CPU outweigh those spent on computation. On the other
hand, the performance of clustering methods is degraded by
increasing dimensionality in the feature vector – a large portion
of data blocks must be read in order to determine nearest
neighbors, which is known as the curse of dimensionality [22].
As a consequence, a large body of work focuses on compres-
sion methods such as binary codes and product quantization
which reduces the dimensionality of feature vectors, leading
to orders of magnitude reduction in data visited. However,
these methods significantly penalize the recall accuracy of the
CBIR system. In this paper, we focus on hierarchical near
data acceleration to improve the performance of CBIR while
preserving the recall accuracy.

B. Application Mapping onto ReACH

Table I summarizes the memory and compute requirements
of the major kernels within each CBIR pipeline stage.
Feature extraction. The major algorithm involved in the
feature extraction step is convolutional neural network (CNN),
which is the most compute-intensive kernel while requiring
the least amount of memory among all steps. The compressed
CNN model parameters are only 11.3 MB using techniques
proposed in [23], which can fit in on-chip SRAM. In light
of this, the on-chip accelerator can potentially achieve higher
performance because 1) it has higher frequency and more
resources to exploit parallelism, 2) on-chip SRAM provides
low access latency so that PEs can quickly be unblocked and
resume processing. Our implementation is based upon [24],
where both computation and memory access are optimized
for FPGA implementation to achieve high throughput across
all layers.
Short-list retrieval. For short-list retrieval, we use the de-
composition in Equation 1 to turn this step to a matrix-
matrix multiplication and a broadcast addition. This kernel
is ideally implemented using the on-chip accelerator due to
its higher frequency and larger resources. However, since
the input ‖Cm‖ and precomputed ‖Cm‖2 takes ∼2.2GB of

memory to store which exceeds the on-chip SRAM capac-
ity, on-chip accelerators would need frequent access of off-
chip DRAM and contend for the shared cache, leading to
a degraded performance. To this end, we support short-list
retrieval by developing customized accelerators near memory.
Although the compute power of near-memory accelerators is
lower, the lower DRAM access latency and the ability to
scale to multiple instances can offset this issue. Note that
near-storage accelerators can potentially provide even better
scalability, but the storage access latency is much higher
and undesirable for compute-intensive workloads like matrix-
matrix multiplication.
Rerank (and reverse lookup). The memory requirement of
the rerank and the reverse lookup steps strongly favors near-
storage computation – using either on-chip or near-memory
acceleration would inevitably require moving large amount
of data across the memory hierarchy which is slow and
energy-inefficient. Moreover, the performance of matrix-vector
multiplication kernel is sensitive to memory bandwidth rather
than computation power. But the limited bandwidth of host
IO interface cannot fully utilize the aggregated bandwidth of
the SSD array. Offloading the task to near-storage accelerators
would expose the full bandwidth of SSDs and can potentially
achieve linear speedup as we scale-up the number of FPGA-
SSD units in the system.
Overall Flow. The overall deployment strategy of the CBIR
pipeline on the ReACH system is summarized in Figure 7.
The user query image batch is first cached on-chip and then,
converted to a batch of feature vectors by the on-chip feature
extraction accelerators using the parameters entirely in on-chip
SRAM. After the GAM is notified of the completion of the first
step, it broadcasts the feature vector batch to the near-memory
short-list retrieval accelerators. These accelerators perform
matrix-matrix multiplications between the incoming feature
vectors and cluster centroids distributed between accelerator-
attached DIMMs. Then, the GAM transfers individual query
vector along with its retrieved short lists to the near-storage
rerank accelerators. The rerank accelerators gathers dataset
vectors from SSDs, computes distance to the query and per-
form a partial sort. Finally, the top K images can be retrieved
from the original image database and returned to the host; note
that we do not include this final step of reverse lookup in our
experiments due to its huge storage requirements. As we can
see from the figure, the only data movement required is the
user query vector and retrieved short-list.

V. EXPERIMENTAL SETUP

Performance evaluation. To evaluate the performance of
ReACH, we extend the open source cycle-accurate accelerator-
rich architecture simulator PARADE [16] to model accel-
erators near the DRAM and SSD. We evaluate a system
with on-chip accelerators attached to coherent shared cache,
accelerators attached to the main memory, and accelerators
attached to SSDs. Our on-chip accelerator is modeled based
on Xilinx Virtex Ultrascale+ VU9P FPGA [25] and is coher-
ently attached to CPU using a cache-coherent interconnect.

Our near-memory accelerator is modeled after AIM [10]
where an embedded Zynq Ultrascale+ ZCU9EQ FPGA is
placed between each DRAM DIMM and the memory bus. An
AIMbus connects each AIM module to enable inter-DIMM
communication. The near-storage accelerator is configured
as the same Zynq Ultrascale+ ZCU9EQ FPGA with a 1GB
DRAM buffer and a PCIe link connecting to the SSD instance.
Table II summarizes the configuration of the system.

TABLE II. EXPERIMENTAL SETUP OF THE COMPUTE HIERARCHY SYSTEM

Component Parameters

CPU 1 X86-64 OoO core @ 2GHz
8-wide issue, 32KB L1, 2MB shared L2

Memory Controller 2 MCs, 64/64-entry read/write request queue, FR-FCFS
Memory System 8 DDR4 DIMMs, 4 for near-memory accelerators and

4 for on-chip accelerator
Storage System 4 NVMe SSD attached with PCIe gen3x16
On-chip Accelerator Virtex Ultrascale+ [25], 100 GB/s to shared cache
Near-Memory Accelerator Zynq Ultrascale+ [25], 18 GB/s bandwidth to DDR4
Near-Storage Accelerator Zynq Ultrascale+ [25] with 1GB DRAM,

12GB/s effective bandwidth to NVMe SSD

TABLE III. FPGA UTILIZATION FOR EACH ACCELERATOR

FPGA Kernel Utilization
(ff,lut,dsp,bram)

Kernel
Freq Power (W)

Xilinx Virtex
Ultrascale+
XCVU9P

CNN (36%,81%,78%,42%) 273 MHz 25
GeMM (24%,27%,56%,77%) 273 MHz 22.13
KNN (10%,10%,10%22%) 200 MHz 11.14

Xilinx Zynq
Ultrascale+
ZCU9EQ

CNN (11%,31%,38%,36%) 200 MHz 5.19/6.13
GeMM (36%,27%,76%,92%) 150 MHz 5.3/8
KNN (23%,20%,30%,22%) 150 MHz 1.8/2.4

Table III shows the list of kernels designed for our experi-
ment: including convoluational neural network (CNN), matrix
multiplication (GeMM), and k nearest neighbors (KNN). It
also lists the FPGA utilization, kernel frequency and the
estimated power for each kernel. There are two numbers
for Zynq FPGA power which represent the power for near-
memory and near-storage accelerator respectively. The near-
storage accelerator has a small DRAM buffer and interface
that increase the dynamic power compared to near-memory
accelerator.

We compare the compute hierarchy against the baseline sys-
tem which only has the on-chip FPGA accelerator. The three
steps of the CBIR application is individually designed and
optimized for both Virtex Ultrascale+ and Zynq Ultrascale+.
Then, the required parameters for simulation such as kernel
frequency, initiation interval, pipeline depth and iterations
are extracted from the synthesis result and plugged into our
ReACH simulator.
Energy evaluation. To estimate the energy consumption of
ReACH, we use SDAccel [26] environment’s post-routing
power reports to estimate the power consumption of the on-
chip accelerator. The reports are further used along with
Xilinx Power Estimator (XPE) tool [27] to estimate the power
for near-memory and near-storage accelerators, by adjusting
the operating frequency, utilization and on-board resources.
While on-chip accelerator has one instance, for near-memory
and near-storage, we vary the number of DIMMs or SSD
instances that are paired with FPGA modules. Table IV shows
a summary of tools and references we used for our energy
analysis. We estimate the energy consumption for all other

components of the baseline system and ReACH architecture,
except for the CPU power as it would be dependent on the
workload running on the CPU and is almost idle in our case.

TABLE IV. ENERGY MODEL TOOLS AND REFERENCES

Component Reference
FPGA Accelerators Xilinx SDAccel 2019.1 [26] and XPE power calculator [27]
Cache CACTI 6.5 [28]
DRAM Micron DDR4 Power Calculator [29]
Storage NVMe SSDs [30] with PCIe Gen3x16 interfaces
Interconnect Host/IO interface switch [31], PCIe links [32]

and Memory channels [33]

CBIR setup. For the CBIR pipeline simulation, we use a batch
of 16 image queries. We preprocess the database image feature
vectors with k-means to obtain 1000 cluster centroids. These
centroids will later be used to retrieve the short-list for each
query. In the final rerank step, we compare each query against
4096 data points based on the short-list to make the simulation
time manageable.

VI. EVALUATION RESULTS

To illustrate the limitations of the compute-centric accel-
eration approach, we analyze the energy distribution between
components of the system during on-chip acceleration of CBIR
pipeline in Section VI-A. We discuss the performance and
energy cost of each CBIR kernel at various compute levels of
ReACH in Section VI-B. Then we implement an end-to-end
CBIR pipeline only using accelerators at one compute level at
a time and compare their performance and energy efficiency in
Section VI-C. To demonstrate the effectiveness of ReACH and
the proposed application mapping, in Section VI-D, we present
the result for the end-to-end CBIR with proper application
mapping to all compute levels of ReACH. We compare the
latency/throughput of query response and give a detailed
breakdown of energy spent on each system component while
running CBIR on ReACH system.

A. Energy Breakdown for On-chip Acceleration of CBIR
Pipeline

To better understand the shortcomings of the on-chip accel-
erator, we implemented the end-to-end CBIR pipeline using
only the on-chip FPGA. We used an optimized kernel for
each step of the pipeline and do not account for the partial
reprogramming delay, since today’s FPGA technology can
reduce this delay to sub-millisecond which is appropriate for
latency-sensitive applications [15]. Figure 8 shows the total
energy consumption for one batch of data, when accelerating
the end-to-end pipeline on chip. It also shows a distribution of
energy across system components, as well as different steps
of the CBIR pipeline. In this implementation, around 79%
of the total energy cost is due to the data movement across
the memory hierarchy. In fact, around 52% of the total cost
is for data movements of Rerank step. The data accessed in
disk is only used once but incurs a large portion of DRAM
and disk energy consumption. In our subsequent experiments,
we analyze if moving the computation near the data medium
(DRAM or disk) will help reduce the energy cost and help
with performance improvements. The on-chip implementation
is our baseline while comparing various acceleration options.

0

5

10

15

20

25

30

ACC Cache DRAM SSD MC and
Interconnect

PCIe

E
n

er
g

y
(J

)

Feature Extraction Short List Retrieval Rerank

7% 5% 9%

15%
12%

52%

0%

10%

20%

30%

40%

50%

60%

70%

Feature
Extraction

Short list
Retrieval

Rerank

P
er

ce
n

ta
g

e
o

f T
o

ta
l E

n
er

g
y

Compute Data movement

Fig. 8. The energy consumption breakdown for accelerating CBIR pipeline
using on-chip accelerator.

0
1
2
3
4
5
6
7
8
9

10
11

Near Mem Near Store

R
u

n
ti

m
e

1 ACC 2 ACC 4 ACC 8 ACC 16 ACC

0

1

2

3

4

Near Mem Near Store

E
n

er
g

y

1 ACC 2 ACC 4 ACC 8 ACC 16 ACC

Fig. 9. Runtime and energy consumption comparison of the feature extraction
step using near memory and near storage accelerators. Numbers are normal-
ized to that of the on-chip accelerator.

B. Performance and Energy Cost for Each Stage at Different
Compute Levels

Feature extraction. The main kernel of feature extraction
step is a convolutional neural network, which is pre-optimized
for each ReACH level. While on-chip accelerator uses a
batched implementation, the near-memory and near-storage
accelerators are best optimized when using single image per
task and keeping a duplicated copy of the CNN parame-
ters. This way, they refrain from costly layer partitioning
and data transfers to other accelerators. Figure 9 illustrates
the runtime and energy consumption for CNN implemented
using near-memory and near-storage accelerators. The result
is normalized to on-chip accelerator’s run time and energy
cost. The initial network parameters are stored in DRAM for
both on-chip and near-memory accelerators; for near-storage
accelerators, the parameters are pre-loaded in private device
DRAM and each instance has its own copy. For on-chip ac-
celerator, the parameteres are interleaved in cache granularity
between different memory channels for higher bandwidth to
CPU and on-chip accelerator. But they need to be continuous,
tiled and duplicated for near-memory accelerators. The feature
extraction workload has a high data-reuse ratio and could
benefit from a large reconfigurable fabric for placements of
PEs that share concurrent access to a large SPM. Thus, when
comparing a single instance of CNN in each compute level, the
on-chip accelerator has a clear advantage over others thanks to
larger area, operating frequency and high-bandwidth access to
last-level cache (7-10x). As the number of instances grow (8 or
16 instances), the collective performance of near-memory and
near-storage accelerators surpass the on-chip one. However,
on-chip accelerator has the best overall energy.

Shortlist Retrieval. A similar runtime/energy comparison
on the short-list retrieval step is illustrated in Figure 10. The
on-chip accelerator performance is bounded by the bandwidth
of loading data from DRAM as they do not fit in on-chip

0

1

2

3

Near Mem Near Store

R
u

n
ti

m
e

1 ACC 2 ACC 4 ACC 8 ACC 16 ACC

0

0.2

0.4

0.6

0.8

1

1.2

Near Mem Near Store

E
n

er
g

y

1 ACC 2 ACC 4 ACC 8 ACC 16 ACC

Fig. 10. Runtime and energy consumption comparison of the short-list
retrieval step using near memory and near storage accelerators. Numbers are
normalized to that of the on-chip accelerator.

0

0.5

1

1.5

2

Near Mem Near Store

R
u

n
ti

m
e

1 ACC 2 ACC 4 ACC 8 ACC 16 ACC

0

0.5

1

1.5

Near Mem Near Store

E
n

er
g

y

1 ACC 2 ACC 4 ACC 8 ACC 16 ACC

Fig. 11. Runtime and energy consumption comparison of the Rerank step
using near memory and near storage accelerators. Numbers are normalized to
that of the on-chip accelerator.

SRAM. The near-memory accelerator achieves better perfor-
mance when there is 2 or more instances, due to the support
of AIMbus and higher aggregated DRAM bandwidth. It also
achieves up to 40-60% energy reduction compared to on-chip
accelerator. For near-storage accelerator, accessing centroids
through PCIe bus limits the performance and energy reduction.
The near-storage accelerator has slightly higher runtime than
the near-memory accelerator, because the latency of device
SSD access is more than the latency of DRAM access.

Rerank. Figure 11 shows the rerank stage runtime/energy
comparison of all implementations. The rerank stage uses
KNN to find the closest images to the query. KNN is an IO-
intensive streaming application with a simple compute unit
and no data reuse. As the input data can only be stored in
the storage, on-chip and near-memory accelerators all have
to fetch data from the SSDs via PCIe. As a consequence,
the performance is heavily limited by the I/O bandwidth,
which is quickly saturated as we add more near-memory
accelerators. The near-memory accelerator achieves speedup
but reaches a plateau when having more than 8 instances. This
plateau is clearly due to high latency and limited bandwidth
of host/IO interface. Moving data would also incur significant
energy overhead on host/IO interface and host DRAM. On the
contrary, the near-storage accelerators allow us to expose the
full bandwidth of SSDs, so that higher aggregated bandwidth
can be easily achieved by scaling up the number of FPGA-
SSD units in the system and each accelerator can be kept busy.
The Rerank step could save up to 60% of its energy cost by
moving from on-chip to near-storage acceleration.

C. Overall Performance and Energy using Single Compute
Level

As described in Table II, our experimental setup has 8
DIMMs and 4 NVMe SSDs. We use this setup for our energy

0

0.5

1

1.5

2

2.5

3

onchip near
mem

near
store

onchip near
mem

near
store

onchip near
mem

near
store

1 ACC 2 ACC 4 ACC

Runtime

Feat Extraction Short List Rerank

0

0.2

0.4

0.6

0.8

1

1.2

1.4

onchip near
mem

near
store

onchip near
mem

near
store

onchip near
mem

near
store

1 ACC 2 ACC 4 ACC

Total Energy

Feat Extraction Short List Rerank

R
un

ti
m

e
To

ta
l E

ne
rg

y

0

0.5

1

1.5

2

2.5

3

onchip near
mem

near
store

onchip near
mem

near
store

onchip near
mem

near
store

1 ACC 2 ACC 4 ACC

Runtime

Feat Extraction Short List Rerank

0

0.2

0.4

0.6

0.8

1

1.2

1.4

onchip near
mem

near
store

onchip near
mem

near
store

onchip near
mem

near
store

1 ACC 2 ACC 4 ACC

Total Energy

Feat Extraction Short List Rerank

R
un

ti
m

e
To

ta
l E

ne
rg

y

0

0.5

1

1.5

2

2.5

3

onchip near
mem

near
store

onchip near
mem

near
store

onchip near
mem

near
store

1 ACC 2 ACC 4 ACC

Runtime

Feat Extraction Short List Rerank

0

0.2

0.4

0.6

0.8

1

1.2

1.4

onchip near
mem

near
store

onchip near
mem

near
store

onchip near
mem

near
store

1 ACC 2 ACC 4 ACC

Total Energy

Feat Extraction Short List Rerank

R
un

ti
m

e
To

ta
l E

ne
rg

y

Fig. 12. The total runtime and energy cost of CBIR using a single compute level, normalized to the baseline on-chip accelerator.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Onchip Near Mem Near Store ReACH

Throughput Improvement

0

0.5

1

1.5

2

2.5

Onchip Near Mem Near Store ReACH

Query Response Latency Improvement

0 10 20 30 40 50 60 70 80 90

onchip

near mem

near store

ReACH

Energy Per Component

ACC Cache DRAM SSD MC and Interconnect PCIe

(a) (b) (c)

Fig. 13. The performance and energy consumption of CBIR running on ReACH compared to on-chip, near memory and near storage acceleration.

estimations, so we scale the number of our near-memory
accelerators from 1 to 2 and 4. The other half of the DIMMs
are reserved for CPU and on-chip accelerator. Figure 12 shows
the run time and energy cost for end-to-end implementation
of CBIR pipeline using a single compute level at a time. The
on-chip accelerator is our baseline and has one instance.

When comparing on-chip accelerator with single instance of
near-memory and near-storage accelerator for CBIR, on-chip
accelerator performs better due to the powerful on-chip FPGA.
But as we scale the number of near-data processing units to 4,
we see higher performance and energy gains in CBIR pipeline.
This shows that near-memory and near-storage accelerators are
most effective when they benefit from aggregated bandwidth
of their attached memory modules. While short-list retrieval
and rerank stages benefit from offloading tasks to near-data
processing units, feature extraction stage has to be modified
to match the decentralized compute levels. Instead of working
on batch of images, each near-data processing unit works on
a single image and uses duplicated parameters. This is one of
the limitations of moving an entire application pipeline near
the storage; not all parts of an application could benefit from
distribution and decentralization.

D. Performance and Energy Cost after Proper Mapping on
ReACH

To reach even higher performance and energy efficiency,
we propose to use a combination of on-chip, near-memory
and near-storage accelerator in concert with each other to do
the computation. The optimized mapping is presented in Sec-
tion IV-B: feature extraction uses on-chip accelerators, short-
list retrieval uses near memory accelerators, and rerank uses

near storage accelerators. As we discussed in Section II-D,
GAM assigns new tasks to each compute level as soon as
the resources become available without waiting for the whole
job to be finished, so the query processing throughput mainly
depends on the longest stage of the pipeline, not the total run
time of all stages. We compare the query latency, throughput
and energy consumption of CBIR pipeline with 4 different
acceleration options in Figure 13.

As shown in Figure 13, compared to on-chip acceleration
only, the throughput of ReACH improves 4.5x when we
coordinately map the application pipeline to multiple compute
levels. We also see 2.2x improvement in query response
latency due to proper mapping of CBIR stages. From the
energy standpoint, the proper mapping achieves the highest
energy efficiency, with 52% energy reduction compared to the
baseline on-chip accelerator (i.e., using less than half of the
original energy). The energy reduction mainly comes from
lower SSD access time and lower usage of main memory to
maintain the streaming data, as well as decrease in intercon-
nect energy.

VII. RELATED WORK

A. On-chip Acceleration

There is a large amount of prior work that implements a
coprocessor or accelerator specialized for a single application
domain through either ASIC or FPGA technology. These
accelerators are often cache-attached, with the ability to access
the shared coherent cache without the assistance from the
host core, eliminating frequent interactions with the host [34],
[35], [36], [37]. CHARM [35] explores the possibility of
dynamically composing complex accelerators from accelerator

building blocks. CAMEL [36] extends CHARM by integrat-
ing FPGA logic on chip for better flexibility and longevity.
Efficient support for a unified address space has also been
explored by [14].

Since the acquisition of Altera, Intel has introduced
various CPU-FPGA acceleration platforms (AgileX [38],
XeonSP [39]) that connect the Xeon processor and FPGA
fabric in the same package through a cache-coherent interface.
Xilinx has also shifted its priority to data center market and
introduced Xilinx Versal ACAP [15] as an on-chip accelerator.
With the capability of swapping partial bitstreams in sub-
millisecond, the Versal ACAP could be utilized by multiple
real-time applications simultaneously.

Tools for designing and modeling accelerator-centric SoCs
have also been developed. PARADE [16] provides accurate
accelerator performance modeling by extending gem5 [40]
with DMA, scratchpad memory and HLS-generated accelera-
tor models. gem5-Aladdin [41], also based on gem5, focuses
on the evaluation of design tradeoffs such as the choice of
using cache or scratchpad for accelerators. Platforms such as
Zynq [42] and Intel HARP [43], which provide from em-
bedded to server-like setups, are widely adopted to prototype
research ideas on on-chip accelerators.

B. Near-Memory Acceleration

Emerging memory technology and advancements in 3D
stacking are considered as the true enabler of processing close
to the memory. The stacking of logic die and memory using
through-silicon via (TSV) allows lower memory access latency
and higher bandwidth. High bandwidth Memory (HBM) [44]
from AMD and Hynix, and Samsung’s Wide I/O [45] are the
memory industries competing 3D memory products. The logic
die which contains the dedicated memory controller could
encompass simple SIMD cores or an embedded FPGA chip
for data analysis. However, WideIO is used for Mobile SoC
systems and HBM is costly to populate the server memory and
replace conventional DDR4. Thus, we focus on near-memory
accelerators for conventional DRAM architecture. Today’s
high-end servers have limited number of memory channels
per socket and multiple DIMMs share the same memory
channel which limits the overall bandwidth to the CPU. Near
memory accelerators help achieve a lower latency and a higher
bandwidth to DIMMs sharing the same memory channel. For
instance, Copacobana [46] builds FPGA modules directly into
DIMMs. AIM [10] places FPGA modules between the DIMM
and the memory network, making the design noninvasive to
the existing memory controller, memory bus and DIMMs.
Contutto [12] prototypes such idea by plugging accelerators in
DIMM slots in a POWER8 machine and shows acceleration
with end-to-end experiments. Our near-memory acceleration
part is most similar to AIM.

C. Near-Storage Acceleration

With the advancement of flash technology, near-SSD com-
puting attracts increasing attention in recent years. Projects
such as SmartSSD [47], Active Disk [48], Biscuit [49] and

Summariser [50] propose to utilize the embedded cores in
a modern SSD to avoid data movement and to free-up the
host CPU and main memory. These studies demonstrate the
versatility of software, but also show the limitation of compute
complexity and parallelism.

Incorporating reconfigurable hardware accelerators to dis-
tributed SSDs is also being investigated actively. IBM
Netezza [7] offloads operations such as filtering to the FPGA
near storage. Willow [51] adds programmability to the SSD
interface to allow programmers to easily customize accelera-
tors. QuickSAN [52], BlueDBM [9], Caribou [53] and Blue-
cache [54] deploy accelerators at the disaggregated storage
servers to avoid data transmission over network. While most
prior work focuses on accelerating big data analytics, Ex-
traV [55] and GraFBoost [56] demonstrate significant speedup
on out-of-memory graph processing.

Compared to prior studies, we are the first to explore a
compute hierarchy that combines hardware accelerators at
all levels, including on-chip, near-memory, and neary-storage
accelerators.

VIII. CONCLUSION

In this work, we are the first to present ReACH, a reconfig-
urable accelerator compute hierarchy that combines on-chip,
near-memory and near-storage accelerators, spanning all levels
of the conventional memory hierarchy. We have explored
hardware and software support to enable effective and easy
use of the ReACH system. At the hardware level, we propose
a global accelerator manager to coordinate between each
compute level and manage resources. At the software level, we
propose a holistic software stack to minimize the programming
efforts of using the ReACH system: a uniform programming
interface is designed to decouple the ReACH configuration
from the user application source code and allow runtime
adjustments without modifying the deployed application. To
demonstrate the effectiveness of ReACH and validate the proof
of concept, we conduct a case study to deploy a billion-scale
content-based image retrieval system on ReACH to leverage
accelerators at all levels in a coordinated way. Experimental
results demonstrate that, compared to conventional on-chip ac-
celeration, a proper application mapping for CBIR eliminates
unnecessary data movement and achieves 4.5x throughput gain
while reducing energy consumption by 52%.

ACKNOWLEDGEMENTS

We acknowledge the support from Center for Domain-
Specific Computing; NSERC Discovery Grant RGPIN-2019-
04613 and DGECR-2019-00120; Canada Foundation for Inno-
vation John R. Evans Leaders Fund; Simon Fraser University
New Faculty Start-up Grant; Samsung, Huawei, and Xilinx.

REFERENCES

[1] “Amazon ec2 f1 instance,” https://aws.amazon.com/ec2/instance-
types/f1/, 2018.

[2] D. Chiou, “The microsoft catapult project,” in IISWC, 2017.
[3] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale

datasets of deep descriptors,” in CVPR, 2016.

[4] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one
billion vectors: re-rank with source coding,” in ICASSP, 2011.

[5] N. Elgendy and A. Elragal, “Big data analytics: A literature review
paper,” in Advances in Data Mining. Applications and Theoretical
Aspects. Springer International Publishing, 2014, pp. 214–227.

[6] Z. Ruan, T. He, and J. Cong, “INSIDER: designing in-storage computing
system for emerging high-performance drive,” in 2019 USENIX Annual
Technical Conference, 2019, pp. 379–394.

[7] M. Singh and B. Leonhardi, “Introduction to the ibm netezza warehouse
appliance,” in Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp., 2011.

[8] L. Woods, Z. István, and G. Alonso, “Ibex: an intelligent storage engine
with support for advanced sql offloading,” Proceedings of the VLDB
Endowment, vol. 7, no. 11, pp. 963–974, 2014.

[9] S.-W. Jun et al., “Bluedbm: An appliance for big data analytics,” in
ISCA-42, 2015.

[10] J. Cong, Z. Fang, M. Gill, F. Javadi, and G. Reinman, “Aim: accelerating
computational genomics through scalable and noninvasive accelerator-
interposed memory,” in MEMSYS, 2017.

[11] S. Yitbarek et al., “Exploring specialized near-memory processing for
data intensive operations,” in DATE, 2016. IEEE, 2016, pp. 1449–1452.

[12] B. Sukhwani, T. Roewer, C. L. Haymes, K.-H. Kim, A. J. McPadden,
D. M. Dreps, D. Sanner, J. Van Lunteren, and S. Asaad, “Contutto:
a novel fpga-based prototyping platform enabling innovation in the
memory subsystem of a server class processor,” in MICRO-50, 2017.

[13] N. Farahpour, Z. Fang, and G. Reinman, “Fpga-based near data process-
ing platform selection using fast performance modeling (wip paper),” in
LCTES, 2020, p. 151–155.

[14] J. Cong, Z. Fang, Y. Hao, and G. Reinman, “Supporting address
translation for accelerator-centric architectures,” in HPCA-23, 2017.

[15] “Versal: The first adaptive compute acceleration platform (acap).”
https://www.xilinx.com/support/documentation/whitepapers/wp505-
versal-acap.pdf, 2019.

[16] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate
full-system simulation platform for accelerator-rich architectural design
and exploration,” in ICCAD, 2015.

[17] Z. Fang, D. Yang, W. Zhang, H. Chen, and B. Zang, “A comprehensive
analysis and parallelization of an image retrieval algorithm,” in IEEE
ISPASS, April 2011, pp. 154–164.

[18] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: an astounding baseline for recognition,” in CVPR, 2014.

[19] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes
for image retrieval,” in ECCV, 2014.

[20] A. Babenko and V. Lempitsky, “Aggregating local deep features for
image retrieval,” in ICCV, 2015.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB, 1998.

[23] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[24] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neural
networks,” in Proceedings of the 35th International Conference on
Computer-Aided Design, 2016.

[25] X. Inc., “Ds890, ultrascale architecture and product data sheet,” 2019.
[26] “Xilinx sdx.” www.xilinx.com/products/design-tools/software-

zone/sdaccel.html, 2019.
[27] X. Inc., “Xilinx power estimator user guide ug440,” 2017.
[28] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing

nuca organizations and wiring alternatives for large caches with cacti
6.0,” in MICRO, 2007.

[29] “Micron ddr4 sdram system-power calculator,”
https://www.micron.com/support/tools-and-utilities/power-calc, 2018.

[30] “Seagate nytro 5910 nvme ssd,” https://www.seagate.com/enterprise-
storage/nytro-drives/, 2017.

[31] “64-lane 16-port pci express system interconnect switch,”
https://www.idt.com/document/dst/89pes64h16-data-sheet, 2017.

[32] B. Loop and Z. Yang, “Pcie nvme* ssd in smaller form factors,” in Flash
Memory Summit, 2016.

[33] S. Ghose et al., “What your dram power models are not telling you:
Lessons from a detailed experimental study,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 2, no. 3, 2018.

[34] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for accelerator-rich cmps,” in DAC-49, 2012.

[35] ——, “Charm: A composable heterogeneous accelerator-rich micropro-
cessor,” in ISLPED, 2012.

[36] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and
G. Reinman, “Composable accelerator-rich microprocessor enhanced for
adaptivity and longevity,” in ISLPED, 2013.

[37] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man, “Accelerator-rich architectures: Opportunities and progresses,” in
DAC-51, 2014.

[38] “With agilex intel gets a coherent fpga strategy,”
https://www.nextplatform.com/2019/04/02/with-agilex-intel-gets-a-
coherent-fpga-strategy, 2019.

[39] “Intel xeon scalable processor 6138p,”
https://www.eejournal.com/article/intel-delivers-xeon-scalable-
processor-6138p-with-arria-10-gx-1150-fpga/, 2018.

[40] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[41] Y. S. Shao, S. L. X. V. Srinivasan, and G.-Y. W. D. Brooks, “Co-
designing accelerators and soc interfaces using gem5-aladdin,” in
MICRO-49, 2016.

[42] S. Neuendorffer and F. Martinez-Vallina, “Building zynq accelerators
with vivado high level synthesis.” in FPGA, 2013.

[43] Accelerator abstraction layer software programmer’s guide, Intel Cor-
poration.

[44] D. U. Lee et al., “25.2 a 1.2v 8gb 8-channel 128gb/s high-bandwidth
memory (hbm) stacked dram with effective microbump i/o test methods
using 29nm process and tsv,” in ISSCC, Feb 2014.

[45] J. Kim et al., “A 1.2 v 12.8 gb/s 2 gb mobile wide-i/o dram with 4x128
i/os using tsv based stacking,” IEEE Journal of Solid-State Circuits, Jan
2012.

[46] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler, “Breaking
ciphers with copacobana–a cost-optimized parallel code breaker,” in
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2006.

[47] J. Do et al., “Query processing on smart ssds: opportunities and
challenges,” in SIGMOD, 2013.

[48] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active disk
meets flash: A case for intelligent ssds,” in ICS, 2013.

[49] B. Gu et al., “Biscuit: A framework for near-data processing of big data
workloads,” in ISCA-43, 2016.

[50] G. Koo et al., “Summarizer: trading communication with computing
near storage,” in MICRO-50, 2017.

[51] S. Seshadri et al., “Willow: A user-programmable ssd.” in OSDI, 2014.
[52] A. M. Caulfield and S. Swanson, “Quicksan: A storage area network

for fast, distributed, solid state disks,” in ISCA-40, 2013.
[53] Z. István et al., “Caribou: intelligent distributed storage,” Proceedings

of the VLDB Endowment, vol. 10, no. 11, pp. 1202–1213, 2017.
[54] S. Xu, S. Lee, S.-W. Jun, M. Liu, J. Hicks et al., “Bluecache: A

scalable distributed flash-based key-value store,” Proceedings of the
VLDB Endowment, vol. 10, no. 4, pp. 301–312, 2016.

[55] J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-J. Nam, M. R. Nutter,
and D. Jamsek, “Extrav: boosting graph processing near storage with a
coherent accelerator,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1706–1717, 2017.

[56] S.-w. Jun, A. Wright, S. Zhang, S. Xu, and Arvind, “Grafboost: Using
accelerated flash storage for external graph analytics,” in ISCA-45, 2018.

