
High-Throughput Lossless Compression
on Tightly Coupled CPU-FPGA Platforms

ABSTRACT
Data compression techniques have been widely used to reduce the
data storage and movement overhead, especially in the big data
era. While FPGAs are well suited to accelerate the computation-
intensive lossless compression algorithms, big data compression
with parallel requests in nature poses two challenges to the over-
all system throughput. First, scaling existing single-engine FPGA
compression accelerator designs already encounters bottlenecks
which will result in lower clock frequency, saturated throughput
and lower area efficiency. Second, when such FPGA compression
accelerators are integrated with the processors, the overall system
throughput is typically limited by the communication between a
CPU and an FPGA.

In this work we propose a novel multi-way parallel and fully
pipelined architecture to achieve high-throughput lossless compres-
sion on modern Intel-Altera HARPv2 platforms. To compensate
for the compression ratio loss in a multi-way design, we implement
novel techniques, such as a better data feeding method and a hash
chain to increase the hash dictionary history. Our accelerator ker-
nel itself can achieve a compression throughput of 12.8 GB/s (2.3x
better than the current record throughput) and a comparable com-
pression ratio of 2.03 over standard benchmarks. Our approach
enables design scalability without clock frequency drop and also
improves the performance per area efficiency (up to 1.5x). More-
over, we exploit the high CPU-FPGA communication bandwidth of
HARPv2 platforms to improve the compression throughput of the
overall system, which can achieve an average practical end-to-end
throughput of 10.0 GB/s (up to 12 GB/s for larger input files) on
HARPv2.

1. INTRODUCTION
Data compression techniques have been widely used in datacen-

ters to reduce the data storage and network transmission overhead.
The Deflate data compression algorithm [1] is one of the most
widely used algorithms at the core of many lossless compression
standards such as ZLIB [2] and GZIP [3]. However, prior profil-
ing results [4] using the standard Calgary Corpus [5] datasets show
that the ZLIB [2] software can only achieve a compression through-
put of 38 MB/s under the fastest configuration. This compression
throughput is too low and significantly diminishes the performance
benefits from reduced data storage and transmission.

The increasing demand for efficient data compression has stimu-
lated a number of studies on compression acceleration in CPUs [6],
ASICs [7] and FPGAs [4, 8–10]. Due to their high performance,
lower power, and reconfiguration flexibility, FPGAs have attracted
increased attention from the community. The opportunity of de-
signing a high-throughput custom memory architecture on FP-
GAs makes it a promising candidate for Deflate accelerators. Re-
cent studies [4, 10] have demonstrated impressive compression re-
sults on FPGAs, which are competitive to ASIC implementations.
One study from Altera [4] implements a Deflate accelerator using
OpenCL and leverages the Altera OpenCL compiler to automati-
cally generate the final FPGA bitstream. This OpenCL implemen-
tation can process 15 bytes per cycle at a clock frequency of 193
MHz, thus achieving a compression throughput of 2.84 GB/s. An-
other study from Microsoft [10] using a hardware description lan-
guage (HDL) scales the design to process 32 bytes per cycle at a
maximum clock frequency of 175 MHz. It achieves a record com-

pression throughput of 5.6 GB/s on FPGAs.
However, most prior studies [4, 10] only report the theoretical

compression throughput for the FPGA kernel itself. In practice, an
FPGA needs to read its input data from a CPU’s DRAM, perform
the compression, and then write the output data back to the CPU’s
DRAM. This CPU-FPGA communication can introduce significant
overhead, especially in the mainstream PCIe-based loosely coupled
CPU-FPGA platforms [11]. Indeed, two recent studies [12, 13] ob-
serve a significant degradation of the compression throughput for
the overall PCIe-based CPU-FPGA platform. They only achieve
marginal improvement compared to a multicore CPU implementa-
tion for big data workloads that usually perform compression on
different data partitions concurrently.

Even given higher CPU-FPGA communication bandwidth, scal-
ing current single-engine FPGA accelerator designs also encoun-
ters the bottleneck. As the latest Microsoft design [10] presented,
each time it scales the number of bytes processed per cycle (BPC)
by 2x, the resource utilization will increase by around 3x. More-
over, even provided with more area resources in larger FPGAs, fur-
ther scaling BPC (e.g., from 32 to 64) for a single compression en-
gine will increase the critical path and degrade the clock frequency,
making the total throughput saturated. As a result, there will be a
large degradation of performance per area efficiency when further
scaling BPC in a single-engine design.

In this paper we present a novel multi-way parallel Deflate com-
pression accelerator design where each way represents a well-
optimized and fully pipelined Deflate engine. Such a parallel ar-
chitecture improves the overall design scalability as the clock fre-
quency of the design is not affected by the number of Deflate en-
gines. It also improves the performance-per-area efficiency since
the resource utilization goes almost linearly with the throughput.

However, the multi-way parallel design comes at a cost of de-
graded compression ratio due to the fact that compression oppor-
tunities in one compression engine may disappear as the match-
ing records reside in another engine. To maintain a comparable
compression ratio to prior studies, we provide novel optimiza-
tions within each single-way Deflate accelerator engine that are
not implemented in prior studies, including 1) a better data feeding
method to reduce the loss of dictionary records, 2) a hash chain to
increase the hash dictionary history. Moreover, we also break the
clock frequency bottleneck in current designs by introducing the
double bank design instead of the double clock design used in [10],
and reverse multiplexer designs in hash memory update.

By parallelizing up to four Deflate engines on HARPv2, we can
compress up to 64 bytes of data per cycle with a fixed clock fre-
quency of 200 MHz, at a compression ratio of 2.03. That is, our
FPGA Deflate accelerator can achieve a peak compression through-
put of 12.8 GB/s, which, to the best of our knowledge, is the best
published result. Compared to the record accelerator design by
Microsoft [10] with 5.6 GB/s throughput, we achieve 2.3x higher
throughput, 1.5x performance-per-area efficiency, more scalability
(e.g., no clock frequency degradation and less design efforts), and
a comparable compression ratio (96%). In addition, on the HARP
platform that has the same Stratix V FPGA as the Microsoft de-
sign [10], our accelerator design can achieve a throughput of 9.6
GB/s, with a 1.4x better performance-per-area efficiency.

Finally, we also explore the impact of CPU-FPGA communica-
tion bandwidth on system-level compression throughput. We wrap
our FPGA accelerator with the CPU software invocation and ab-



stract it as a software library on modern Intel-Altera HARP and
HARPv2 platforms. With the CPU-FPGA communication band-
width significantly increased, we achieve an average practical end-
to-end compression throughput of 3.9 GB/s on HARP and 10.0
GB/s (up to more than 12 GB/s for large input files) on HARPv2.
This shows that the compression design is rather powerful in real-
world applications. We also plan to open source our design to the
community in the near future.

2. BACKGROUND
In this section we first discuss prior studies about compression

accelerators. Then we introduce the lossless Deflate algorithm—
which includes the LZ77 algorithm [14] and static Huffman encod-
ing [15]—and review its details for existing single-engine FPGA
implementation.

2.1 Prior Studies and Their Limitations
FPGAs have attracted increased attention from the community

in the past decade based on their high performance, energy effi-
ciency and flexibility. Many efforts have been made to increase the
compression accelerator’s throughput and scalability.

Altera [4] implemented an Deflate accelerator using OpenCL
that processes 15 bytes per cycle at a kernel frequency of 193 MHz.
They achieved a 2.84 GB/s throughput and 2.17x compression ratio
at the expense of using 47% of the logic and 70% of the RAM. Mi-
crosoft [10] expanded the compression throughput to 5.6 GB/s by
scaling up to 32 byte/cycle at a clock frequency of 175 MHz, which
achieved a record of compression throughput on FPGAs. Further
scaling of these two designs will be even harder because the de-
signs already consume large area, and as shown by [10], the growth
of FPGA area usage is much faster than the incremental bytes pro-
cessed per cycle. The kernel’s running frequency may also drop
as the FPGA area usage increases, which will degrade the perfor-
mance improvement.

IBM proposed a multi-way parallel compression engine design
based on the 842B algorithm [8]. They implemented a single com-
pression engine that processes 8 bytes per cycle at a clock fre-
quency of 125 MHz and achieves a compression ratio of 1.96. By
applying four engines they can get a throughput of 4 GB/s, but the
compression ratio will be further sacrificed based on our study. Fur-
thermore, there are no system interface and data feeding methods
to support the multi-way parallel compression kernel, and thus no
in-depth analysis or solid implementation when the compression
engine scales to process a larger equivalent data window size—as
will be done in our study. Later on, IBM implemented another De-
flate accelerator [9] which achieved a throughput of 16 bytes/cycle
at 250 MHz, i.e., 4 GB/s. However, its scalability is limited due
to certain architectural choices like a 256-port hash table. An-
other Xpress9 compressor [16], targeting high compression ratio,
integrated seven engines to support heavily multi-threaded envi-
ronments. However, its throughput is only limited to 200 to 300
MB/s.

A quantitative comparison of our work to the recent IBM [9],
Altera [4], and Microsoft [10] implementations will be presented
in Section 5.2.

2.2 Deflate Algorithm and Review
The lossless Deflate algorithm [1] mainly includes two stages:

first, it performs the dictionary-based LZ77 [14] compression; sec-
ond, it performs the Huffman encoding [15] to compress at bit level.

2.2.1 Algorithm Overview
The LZ77 [14] compression algorithm scans the incoming byte

stream and compares the new input with the entries in a dictionary
which is populated by past input data. After finding a common
string of length L, this repeated section of the incoming string is re-
placed with a (L, D) pair, where D is the distance between the his-

Figure 1: Single-engine fully-pipelined Deflate accelerator architecture

Figure 2: Current and next window of input string to be compressed

tory and the incoming string. Then, the incoming string is recorded
in the dictionary for future references. The Deflate format limits
distances to 32K bytes and lengths to 258 bytes, with a minimum
length of 3.

Huffman encoding is known to produce the minimum length en-
coding given the alphabet and the relative frequency of all charac-
ters. The Deflate algorithm has a dynamic Huffman encoding op-
tion, where the algorithm creates a Huffman code with the relative
frequency produced by the current input, resulting in the minimum
length encoding for the given input’s LZ77 result. However, it re-
quires frequency tracking and must be done after the LZ77 phase.
Dynamic Huffman encoding is typically used in higher levels of
ZLIB and GZIP standards, where a high compression ratio is fa-
vored over throughput. On the other hand, the Deflate algorithm
also allows a static Huffman encoding option, where the Huffman
code is generated by a golden frequency and is statically available.
We use the static Huffman encoding option in this paper in order to
enable the fully-pipelined accelerator design.

2.2.2 Review of Existing Single-Engine Implementa-
tion

Our initial single-engine accelerator architecture is shown in Fig-
ure 1, which is similar to [4] and [10]. We summarize the imple-
mentation of six major stages in this subsection and refer the audi-
ence to [4] and [10] for more details. Let us denote the bytes we
are currently processing "the current window," and the number of
bytes processed in each clock cycle "VEC," which represents the
compression throughput.

Stage 1: Hash calculation. In each cycle the pipeline extracts
all the substrings of length VEC, starting from every byte in the
current window, and indexes each substring to its corresponding
history memory using hashing. For the example of VEC=4 in Fig-
ure 2, it extracts four substrings (each with length 4) for the cur-
rent window. VEC-1 more bytes from the next window are re-
quired for extracting substrings starting from later bytes of the cur-
rent window. These substrings are then hashed and later matched
with history data to implement the LZ77 algorithm. The length of
VEC represents the substring lengths to be compared, and therefore
the maximum match length. It seems the better maximum match



Figure 3: Hash (bank) conflict solution 1: double clock, proposed by [10]

length, the better the compression ratio. However, the study in [10]
shows no compression ratio improvement when increasing VEC
from 24 to 32. This is because in most of the standard benchmarks
there is no match whose length is larger than 24, or such a match
cannot be detected in the proposed algorithm. This observation is
important as it enables us to start from a relatively small VEC de-
sign (e.g., VEC=16) with negligible compression ratio loss.

Stage 2: Hash memory update. The hardware compares these
VEC input substrings to the records in the hash history memory,
and replaces the old records with these input strings. The hash
history memory is a dual-ported RAM that enables one read and
one write per clock cycle. To help reduce bank access conflict, [10]
suggested the hash memory runs at twice the clock rate of the rest of
the system so each bank can handle two read requests in one system
clock cycle. Figure 3 shows an example of bank conflict. Assuming
strings "AABA," "ABAA," and "AABC" are all mapped to bank 2,
in this case only the first two strings are allowed to access the bank.
The switch part that connects each substring to its corresponding
memory bank will become the critical path when we scale VEC to
a higher number. It will limit the clock frequency of the design,
since each time it needs to reorder VEC inputs while each input
is a string of VEC bytes. The situation will be even worse when
using a doubled-rate clock frequency since the switch also needs to
be operated at the same clock frequency.

Stage 3: String match. The VEC records from hash history
memory are matched with their corresponding input strings in par-
allel, and any match with match length smaller than 3 is rejected.
Another switch is required to remap the VEC records to their coun-
terparts, and it faces the same timing challenges as the one in Stage
2. According to the LZ77 algorithm [14], an (L,D) pair is emitted
for each input position. If there is a match, then L represents match
length, and D represents the distance between the history record
and the current input string. If the match is rejected, then L is the
byte value and D is 0. A special case that needs to be addressed is:
if match length L is larger than D, L needs to be truncated to D to
avoid overlapping.

Stage 4: Match selection. The matches in the current window
could stretch to the next window and need to be pruned to avoid
match overlapping between windows. This is implemented in two
phases. First, in each cycle VEC matches from each byte in the
current window will be compared to select a best match that extends
farthest. The best match will be taken and any byte included in
the best match will be covered. This comparison can be done in
parallel. Then the bytes in-between the current best match and the
best match extended from the previous window will be examined
one by one to resolve the conflict between adjacent matches, this
is referred to as lazy evaluation [10]. This phase is a loop behavior
and can be implemented as a series of VEC pipeline stages.

Stage 5: Huffman translation. The following stage is Huffman
encoding. The method of counting symbol frequency and using
dynamic Huffman encoding no longer works because the Huffman
packing pipeline must run simultaneously with LZ77 stages in a
pipeline fashion. Therefore, static Huffman encoding is used in
this design. Static Huffman encoding is nothing but a dictionary
lookup, which is implemented as a ROM. The VEC (L,D) pairs
can be looked up within VEC ROMs in parallel. After each (L,D)
gets translated, we get a four-code tuple (Lcode, Dcode, Lextra,
Dextra). Lcode and Dcode are the codes for literal and distance;

Figure 4: Overview of our multi-way parallel and fully-pipelined Deflate
accelerator design

Lextra and Dextra are the extra bits to encode literal and distances.
Stage 6: Bit packing. The last step involves packing the bi-

nary codes of different lengths together and aligning them to byte
boundaries. This is because the length of the four-code tuple output
ranges from 8 bits to 26 bits, while the data we finally stored are in
byte format. Packing can be easily achieved by a series of shift-OR
operations [10].

3. ACCELERATOR OPTIMIZATION
To improve the compression throughput and overall system effi-

ciency of the FPGA Deflate accelerator design, we exploit a multi-
way parallel design, where each accelerator engine can compress
a relatively small amount of data concurrently. A system-level
overview of our multi-way accelerator design is shown in Figure 4.
The details of the CPU-FPGA interface will be introduced in Sec-
tion 4.1. Our initial accelerator engine pipeline is similar to that
in [4] and [10]. Note that for a single accelerator engine, as the
data window size VEC increases from 16 to 32 bytes (per cycle), the
ALM resource usage on FPGAs is increased nonlinearly by roughly
2.6x times, while the compression ratio is improved only by 3%, as
observed both by us and the study in [10]; so using a data window
size of 16 would be a good trade-off of resource usage and com-
pression ratio. We will evaluate the design trade-offs in Section 5.

To compensate for the compression ratio loss in our multi-way
design and improve the overall efficiency, in this section we will
mainly present novel optimizations implemented in our accelerator.
First, we propose a better data feeding method to multiple engines
to reduce the loss of dictionary records and thus improve the com-
pression ratio. Second, we propose single engine optimizations,
including hash chains to improve the hash dictionary length and
compression ratio, double bank design and switch optimization to
improve clock frequency and resource utilization.

3.1 Multi-Engine Data Feeding Method
Since we propose a multi-way parallel FPGA Deflate accelera-

tor design shown above in Figure 4, we need to divide the input
file into multiple (four in our example) segments to feed each De-
flate engine (core). There are two ways to fetch data for the FPGA
accelerator. The first is cyclic data feeding, shown in Figure 5(a).
Each time it fetches four small consecutive blocks (e.g., VEC bytes
of data, or cachelines in HARP and HARPv2 platforms) and feeds
them to the four parallel engines. The second is block data feeding,
shown in Figure 5(b). It segments the entire input file into four large
consecutive parts. Each time it fetches one (or multiple) cachelines
from one of the four parts and feeds them into each compression
engine.



(a) Cyclic data feeding

(b) Block data feeding

Figure 5: Data feeding from CPU to FPGA Deflate accelerator

Due to the fact that the similar data usually locate in nearby
regions in a file, the compression ratio (measured by input file
size divided by output file size) of the block data feeding is much
higher than that of cyclic data feeding. Actually, the block feed-
ing method suits the Deflate algorithm perfectly to compress large
files since the Deflate format limits history distance to 32K bytes.
For files much larger than 32K bytes, strings in the latter part will
not be compared to the previous part with a distance longer than
32K bytes. Therefore, it makes minor impacts on compression ra-
tio to segment large files for block data feeding, because only the
compression of data strings in block boundaries might be affected.
Compared to cyclic data feeding, the degradation on compression
ratio due to block segmentation is negligible. On the other hand,
cyclic data feeding offers better streaming capability. However,
block data feeding can work as well for streaming applications by
processing a collection of streaming data each time, for example,
on the order of a few megabytes. Considering these, we will use
the block data feeding as our default data feeding method.

3.2 Single Engine Optimization
In this subsection we will mainly present our new optimizations

for the single compression engine to improve compression ratio,
clock frequency, and resource utilization efficiency. These opti-
mizations mainly focus on the major bottleneck stages 2 and 3 in
Section 2.2.2, which 1) map the input strings that will be stored to
the memory banks; 2) obtain and map the read results of previous
strings from the memory banks for the inputs; and 3) compare the
input strings and previous strings to get the match length and dis-
tance results. With all the optimizations, our single compression
engine is fully pipelined, with an pipeline initial interval of one.

3.2.1 Hash Chain Implementation
As presented in Section 3.1, even given the block data feeding

method, the compression ratio will drop to some extent—which
means we need to compensate for the potential compression ratio
loss in a single engine. Therefore, we increase the history dictio-
nary size to find a better match. To achieve this, a hash memory
chain, as shown in Figure 6, is implemented in the hash memory
update stage. It is like a shift register, but in more of a register file
format. Every cycle different depths of the chained memory all re-
turn a candidate string as the read output, and the current depth’s
read output is the input written into its next depth’s memory. The
substring in the current window will be stored into the memory in

Figure 6: Hash memory chain for each hash history

Figure 7: Hash (bank) conflict solution 2: double bank in this paper

the first depth of the chain. In the example, candidate 1, 2 and 3 are
the output of each memory at different depths of the memory chain,
and all of them will be compared to the substring to find the best
match. After that, the current substring will be stored into chain
depth 1, candidate 1 will be stored into chain depth 2, and so on.

3.2.2 Double Clock Design vs. Double Bank Design
To reduce the compression ratio drop caused by bank conflicts,

Microsoft [10] uses a second clock whose frequency is twice the
global clock to read and update the 16 (VEC) hash memory banks
(dictionaries), which we refer as design 1. As will be evaluated in
Section 5, the doubled clock frequency of the memory part will be-
come the bottleneck of the whole design and significantly limits the
system performance, especially when we integrate the idea of hash
memory chain. We propose a second design to use a single clock
while doubling the number of banks to 32 (2*VEC), as shown in
Figure 7. As a result, we increase the length of the hash dictionary.
This approach avoids the doubled clock frequency bottleneck and
enables us to integrate more depth of hash chain.

3.2.3 Switch Optimization
As presented in Section 2.2.2, we implement the switches with

multiplexers whose inputs are strings and select signals are the
hash values. For the first set of switches that map the input strings
which will be stored to the memory banks, we can use one 16-to-
1 (VEC=16) multiplexer (MUX) for each hash chain as shown in
Figure 8. To avoid the timing bottleneck, we pipeline the 16-to-1
MUXes into 2 stages using 4-to-1 MUXes.

For the second set of switches that map the read results of previ-
ous strings from the memory banks for the inputs, it is more com-
plex. A straightforward way is using a 32-to-1 128 bit-width input
MUX to select the record string from the 32 output ports of memory
banks (hash table) for each depth of the chain, and then compare
it with the input string, as shown in Figure 9. This way ensures
that for those strings which cannot access the memory (e.g., bank
conflict, their mapped banks have been accessed) are still able to
measure if they are matched with the previous strings. Another
way is to leave those strings as mismatched literals and just com-



Figure 8: Input mapping to hash memory chain, i.e., memory banks

Figure 9: Memory bank (hash table) mapping to input option 1: string
matching after 128-to-1 MUX

pare output port data of memory with the data delayed by 1 cycle
from its input port, as shown in Figure 10. If the bank has not
been accessed, (e.g., Banks 3), then the match calculation unit will
generate a pair of (L=0, D=0) to indicate the case. The compared
result is simply a 5-bit length data, which is much shorter than the
original 128-bit data string. So we can use 5-to-1 MUXes to se-
lect the corresponding hash match results for each input string. In
this design we employ the second option to avoid the overhead of
multiplexers (reduce it from 128-to-1 MUX to 5-to-1 MUX) to im-
prove the timing and resource consumption. The compression ratio
only degrades by 3% since we have actually mapped the 16 input
strings to 32 memory banks (e.g., design 2) or conceptually due to
its double clock frequency (design 1). The second way eliminates
the timing bottleneck even when we scale further up. For example,
when we scale to process 32 bytes per cycle, we only need to use
32 6-to-1 MUXes, which introduces much less overhead and does
no harm to the clock frequency of the design.

4. SYSTEM INTEGRATION

Figure 10: Memory bank (hash table) mapping to input option 2: 5-to-1
MUX after string matching

Figure 11: Intel-Altera HARP and HARPv2 CPU-FPGA architecture

In this section we first introduce some of the background on
the recent Intel-Altera HARP [17] and HARPv2 [18] CPU-FPGA
platforms that we leverage to achieve high end-to-end compression
throughput. Then we present the CPU-FPGA communication flow
and implementation of our multi-way accelerator architecture in the
tightly coupled Intel-Altera HARPv2 CPU-FPGA platform. The
integration flow is similar to the old-generation HARP platform.

4.1 CPU-FPGA Platform
The mainstream PCIe-based CPU-FPGA platforms use direct

memory access (DMA) for an FPGA to access the data from a
CPU. First, the FPGA needs a memory controller IP to read the data
from the CPU’s DRAM to its own DRAM through PCIe. And then
the FPGA performs specified acceleration in its accelerator func-
tion units (AFUs). In fact, this DRAM-to-DRAM communication
through PCIe can have a limited bandwidth in practice; for exam-
ple, this practical PCIe bandwidth can be only around 1.6 GB/s (al-
though the advertised bandwidth is 8 GB/s) according to the study
in [11]. This makes it impractical to implement full-speed accel-
eration even if we have a high throughput compression accelerator
on the FPGA side.

The recent Intel-Altera HARP platform uses the QuickPath In-
terconnect protocol (QPI). HARPv2 uses one QPI channel and two
PCIe channels within a single package to connect the CPU cores
and FPGA accelerators, as shown in Figure 11. And the CPU
and FPGA can communicate using the shared memory to signif-
icantly increase the CPU-FPGA communication bandwidth. AFU
can read/write data directly from/to system virtual memory through
the core-cache interface (CCI). This architecture makes FPGA have



Figure 12: Flow chart of CPU-FPGA system execution

first-class access to the system memory and thus achieve a high-
bandwidth and low latency for CPU-FPGA communication. Ac-
cording to the study in [11], HARP can provide 7.0 GB/s FPGA
read bandwidth and 4.9 GB/s FPGA write bandwidth. Using the
same benchmark method in [11], we find that HARPv2 has fur-
ther improvement and can provide more than 15 GB/s FPGA read
and write bandwidth. Such high CPU-FPGA communication band-
width provides opportunities to achieve a much higher end-to-end
compression throughput in practice.

Moreover, this shared system memory architecture eliminates
explicit memory copies and increases the performance of fine-
grained memory accesses. This proves to be rather useful in our
multi-way parallel design where we need to read/write to multiple
random memory locations in consecutive cycles.

4.2 CPU-FPGA Communication Flow and In-
terface Design

Figure 12 presents the flow of compression execution. At initial-
ization, the CPU first allocates memory workspace which is shared
by the CPU and the FPGA, as shown in Figure 13. This includes
device status memory (DSM) workspace to keep track of the sta-
tus of the FPGA accelerator, a source buffer for storing the source
data, and a destination buffer to store the processed output data. Af-
ter loading the source file into the source buffer, the CPU segments
the source file equally into N blocks (four in our example) and then
writes the segmented base addresses and block sizes to the FPGA.
The initial setting being done, the CPU enters a wait state and polls
the status bit in DSM until the FPGA sends an ending signal. On
the other side, the FPGA accelerator begins execution after loading
the addresses and source data block sizes. Each engine is allowed
an equal share of time to send read requests for source data from the
shared memory using a round-robin arbiter. Since read responses
are out of order in the HARPv2 platform, re-order buffers are used
to restore source data order before compressing. The processed
results are kept temporarily in first-in-first-out (FIFO) buffers be-
fore writing back to the destination buffer in the shared memory.
Another arbiter is used to control write access among the Deflate
engines. After all the source data are processed, the FPGA will
signal the CPU that all work has been done.

In HARPv2, the data transfer size for each read/write request can
be 1,2 or 4 consecutive cache lines (64 bytes per cache line); and
for maximum CPU-FPGA data bandwidth, our design uses 4 cache
lines per request while other options are also supported. Read/
write requests generated by the accelerated function unit (AFU) are

Figure 13: Shared memory space CPU-FPGA system

compliant with the core cache interface (CCI-P) which is the inter-
face between the AFU and FPGA interface unit (FIU). The FIU is
formed by Intel QPI and PCIes and implements the interface pro-
tocols for links between CPU and FPGA. The three physical links
(one QPI and two PCIes) are configured to one virtual channel in
our accelerator design, and the FIU will optimize the communica-
tion bandwidth by steering requests among the three physical links.

5. EVALUATION

5.1 Experimental Setup
We test our FPGA Deflate accelerators on the HARPv2 [18] plat-

form (major platform) and use the Calgary Corpus [5] datasets as
the benchmarks to measure the average compression throughput
and compression ratio. To show how CPU-FPGA communication
bandwidth may limit end-to-end throughput and avoid FPGA hard-
ware generation gap, we also test some of the designs on the HARP
platform as a comparison since HARP still has a very limited com-
munication bandwidth and it uses the same Stratix V FPGA as pre-
vious studies [4, 10].
HARP Platform. HARP platform integrates an Intel Xeon E5-
26xx v2 processor and an Altera Stratix V 5SGXEA7 FPGA mod-
ule.
HARPv2 Platform. HARPv2 platform integrates a 14-core Broad-
well EP CPU and an Altera Arria 10 GX1150 FPGA module.

5.2 Comparison of Deflate Accelerators
Since most prior studies only measure the performance of the

FPGA Deflate accelerator, we first compare our accelerator design
to state-of-the-art studies in Table 1. By using the novel multi-
way parallel and fully pipelined accelerator architecture where each
way features a single clock, 32 banks and a memory chain depth
of 3 designs that can process 16 bytes per cycle, we can com-
press 64 bytes/cycle (4-way parallel) at a clock frequency of 200
MHz. This is more scalable than merely scaling up the data win-
dow size of a single Deflate engine, since the area increases nonlin-
early with the data window size, and the maximum frequency the
engine can achieve drops as a result of routing problems. In sum-
mary, our FPGA Deflate accelerator achieves a record compression
throughput of 12.8 GB/s, which is 2.2x faster than the prior record



Table 1: FPGA Deflate accelerator comparison
Design Frequency Throughput Compression ratio Area(ALMs) Efficiency (MB/s per kilo ALMs)
IBM [9] 250 MHz 4 GB/s 2.17 110,000 36

Altera [4] (Stratix V) 193 MHz 2.84 GB/s 2.17 123,000 23
Microsoft [10] (Stratix V) 175 MHz 5.6 GB/s 2.09 108,350 52

This work on HARP (Stratix V) 200 MHz 9.6 GB/s 2.05 134,664 71.3
This work on HARPv2 (Arria 10) 200 MHz 12.8 GB/s 2.03 162,828 78.6

0

0.5

1

1.5

2

2.5

3

3.5

4

Co
m
pr
es
sio

n	
ra
tio

1	engine 4	engines

Figure 14: Compression ratio when scaling from 1 engine to 4 engines

in [10]. In addition, our design is also much more resource-efficient
in terms of compressed MB/s per kilo ALMs, which is 1.5x effi-
cient than the prior record in [10]. Please also note we measure
our designs at a fixed clock frequency of 200 MHz, since the plat-
form provides the fixed clock. In fact, due to our optimizations, our
FPGA kernel can work at an even higher clock frequency.

The compression ratio drops by 4.7% compared to Microsoft’s
work [10], but it is still acceptable. This drop is due to the fact
we divide the input file into four parts to feed into four different
compression engines. If the data in one part should be matched
better with the data in another part, then in our case the compression
ratio drops.

To be fair about the comparison, we also break down the com-
pression accelerator kernel speedup into two parts: improvement
from the accelerator design and improvement from the FPGA tech-
nology advancement.

5.2.1 Improvement from Accelerator Design
Since previous studies [4, 10] both implement their designs on

Stratix V FPGA, we also list the experimental result on HARP,
which also uses Stratix V. Due to the total resource limitation, we
can only put three Deflate engines on it. Still, we can achieve a
compression throughput of 9.6 GB/s, which is 1.7x faster and 1.4x
more efficient in performance per area over the record design [10]).

5.2.2 Improvement from Technology Advancement
HARPv2 uses a more advanced Arria 10 FPGA, which provides

more area and enables us to integrate one more Deflate engine than
HARP Stratix V FPGA. As a result, we can achieve 12.8 GB/s
compression throughput on HARPv2. Table 2 lists the FPGA re-
source utilization on the HARPv2 platform, where ALMs are the
main contributor. Note that HARPv2 interface itself occupies an
additional 20% of the FPGA resource.

Table 2: FPGA resource utilization on HARPv2
Resources Amount

ALMs 162,828 (38%)
Registers 248,188 (15%)

Block Memory Bits 16,177,152 (29%)

5.3 Scaling Effect
Figure 14 shows the corresponding compression ratio of Calgary

Corpus benchmarks as we change the parallel engine number from

1 to 4. The single engine (VEC=16) achieves an average compres-
sion ratio of 2.11. When we increase the throughput to 12.8 GB/s
with 4 engines, the average compression ratio drops by 3.7%. Note
that the compression ratio of those large files (e.g., book1, book2,
news and pic) only degrades by less than 1%. This result proves the
analysis we present in Section 3.1 that the multi-way parallel De-
flate compressor perfectly suits the applications where large files
need to be compressed.

Table 3: Scaling results on HARPv2
Parallel Engine No Throughput Compression ratio Area (ALMs)

1 3.2 GB/s 2.11 38,297
2 6.4 GB/s 2.07 78,604
3 9.6 GB/s 2.05 118,891
4 12.8 GB/s 2.03 162,828

Table 3 lists the area usage (and compression ratio) for scaling up
engines, and the total area usage increases roughly linear. Consid-
ering that the area when we directly change the data window size of
a single compression engine from 16 to 32 bytes will increase the
ALM usage by 2.6x, it is also difficult to keep the frequency to a
high value. This becomes the bottleneck for scaling in some cases
where the system needs to run at a fixed clock frequency. For ex-
ample, on HARP the system needs to run at 200 MHz. Exploiting
the parallel engines can avoid this scaling problem as each engine
is designed and placed separately.

5.4 Design Tradeoff Evaluation
The single compression engine design is important as it deter-

mines the baseline performance for the whole design. Thus, we
explore the single engine design space to choose the best.

5.4.1 Memory Chain Depth
Table 4: Memory chain depth on HARPv2

Depth Compression ratio Area(ALMs)
1 1.92 31,360
2 2.04 34,761
3 2.10 38,297

We first compare the performance of different hash chain depths
for a single engine in Table 4. Increasing one depth only augments
3,500 more ALMs, thanks to the MUX optimization, and there is
more than a 9% improvement on the compression ratio, increas-
ing depth from 1 to 3. Note that further increasing memory chain
depth will not benefit the system performance much, and the com-
pression ratio gain becomes marginal (less than 1.5% improvement
measured). In fact, the dictionary strings read from each depth need
to be compared with the same input substring simultaneously, so
matching comparison of the input string and the output dictionary
string from the deepest memory bank will become the critical path.

5.4.2 Double Clock vs. Double Bank
As presented in Section 3.2.2, a double clock design (design 1) is

also implemented whose memory part uses a clock frequency that
is twice the global clock. We use the same number of bank numbers
as VEC (i.e., 16 banks), set the memory chain depth to be 3, and
integrate 4 parallel engines. Table 5 summarizes the two designs.
For the double clock design, since BRAM blocks are placed as ar-
rays and the interconnect between two adjacent arrays will con-
sume more time, the memory chain which occupies more than one
single array can only run at a frequency of 340 MHz under the
fastest configuration, thus limiting the system performance. Since



Table 5: Double Clock v.s. Double Bank on HARPv2
Design Frequency Throughput Compression ratio Area(ALMs) Efficiency (MB/s per kilo ALMs)

Double clock design 150 MHz 9.6 GB/s 2.10 115,436 83
Double bank design 200 MHz 12.8 GB/s 2.03 162,828 78.6

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0

100

200

300

400

500

600

700

800

Pr
ac
tic
al
	t
hr
ou
gh
pu
t	
(G
B/
s)

Fi
le
	si
ze
	(k

B)

file	size end-to-end	throughput

Figure 15: Compression throughput and ratio on HARPv2, under different
file size of Calgary Corpus datasets

HARPv2 provides another clock group of 150/300 MHz, we take
150 MHz as the system clock for the design and achieve the equiva-
lent throughput of 9.6 GB/s, which is only 75% of the performance
of the single clock design with double banks.

However, the area efficiency of the double clock design is
slightly better than the double bank design since it reduces the use
of memory banks and corresponding multiplexers. Another inter-
esting benefit of the double clock design is that it gives a slightly
better compression ratio. This is because raising clock frequency
while reducing memory banks enables similar strings to have more
chances at being mapped to the same bank.

5.5 End-to-End Compression Throughput
We measure the end-to-end compression throughput by inserting

a counter on the FPGA side. The counter counts the total clock cy-
cles from when FPGA sends the first request to read the memory to
the time it sets the data valid bit in the memory—which indicates
the FPGA work is done and all of the data has been written back to
the memory. Note that on HARP and HARPv2, the CPU and FPGA
share the same memory so that there is no additional memory copy
overhead on conventional PCIe-based platforms. Denote the total
clock cycles as tcycle and the total amount of data fed to the com-
pression engine as Adata bytes, then the end-to-end compression
throughput can be measured as Adata /tcycle.

The end-to-end overall compression throughput results are
shown in Table 6. To show the overhead of CPU-FPGA communi-
cation, we first test our design on HARP, where the QPI bandwidth
is limited (7 GB/s for read and 4.9 GB/s for write). We integrate
3-way parallel engines on HARP since the Stratix V FPGA module
on HARP provides less resources and cannot accommodate more
engines. The FPGA kernel throughput is 9.6 GB/s, while we can
only achieve an average of 3.9 GB/s practical throughput based on
the Calgary Corpus benchmarks.

Table 6: End-to-end compression throughput on HARP and HARPv2
Platform FPGA Throughput Practical Throughput
HARP 9.6 GB/s 3.9 GB/s

HARPv2 12.8 GB/s 10.0 GB/s

On the other hand, even considering the read and write latency,
we can see that HARPv2 can achieve an average end-to-end com-
pression throughput of 10.0 GB/s since it has over 15 GB/s CPU-
FPGA communication bandwidth. We also list each benchmark’s
size and its corresponding practical throughput in Figure 15. If the
file size is larger than 500 kB (e.g., book1, book2 and pic), then
the overhead of communication latency will be negligible and the

end-to-end throughput can be up to 12 GB/s.

6. CONCLUSION
In this work we designed an FPGA Deflate accelerator that can

be easily scaled to achieve a record compression throughput of
12.8 GB/s while maintaining a relatively high compression ratio
of 2.03. We presented methods for efficiently feeding data into
the parallel compression engines, improving the resource utiliza-
tion, augmenting compression ratio, and improving the clock fre-
quency of the single fully pipelined compression engine. This is
the first public work to integrate the compression accelerator with
Intel-Altera HARP and HARPv2 platforms, where we leverage the
high CPU-FPGA communication bandwidth to achieve high end-
to-end system compression throughput. The end-to-end compres-
sion throughput we achieve is 3.92 GB/s on HARP and 10 GB/s
(12 GB/s) on HARPv2. This shows that our compression accelera-
tor design is a great fit for the new HARP and HARPv2 platforms.

References
[1] P. Deutsch, “DEFLATE Compressed Data Format Specification version 1.3,”

http://www.rfc-base.org/txt/rfc-1951.txt, 1996, [Online; accessed 23-Apr-2017].
[2] “Zlib Compression Library,” http://www.zlib.net/, [Online; accessed 23-Apr-

2017].
[3] “Gzip file format specification version 4.3,” https://tools.ietf.org/html/rfc1952,

[Online; accessed 23-Apr-2017].
[4] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a Chip: High Perfor-

mance Lossless Data Compression on FPGAs Using OpenCL,” in Proceedings
of the International Workshop on OpenCL 2014, ser. IWOCL ’14. ACM, 2014,
pp. 4:1–4:9.

[5] “The Calgary Corpus,” http://corpus.canterbury.ac.nz/descriptions/#calgary,
[Online; accessed 23-Apr-2017].

[6] V. Gopal, J. Guilford, W. Feghali, E. Ozturk, and G. Wolrich, “High
Performance DEFLATE Compression on Intel Architecture Processors,”
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/
ia-deflate-compression-paper.pdf, 2011, [Online; accessed 23-Apr-2017].

[7] “AHA3642 Compression Core,” http://www.aha.com/DrawProducts.aspx?
Action=GetProductDetails&ProductID=38, 2014, [Online; accessed 23-Apr-
2017].

[8] B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad, “High-Throughput, Lossless
Data Compresion on FPGAs,” in Proceedings of the 2011 IEEE 19th Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines,
ser. FCCM ’11, 2011, pp. 113–116.

[9] A. Martin, D. Jamsek, and K. Agarwal, “Fpga-based application acceleration:
Case study with gzip compression/decompression streaming engine,” in Special
Session 7C, IEEE International Conference on Computer-Aided Design, 2013.

[10] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, “A Scalable High-Bandwidth
Architecture for Lossless Compression on FPGAs,” in The 23rd IEEE Interna-
tional Symposium on Field-Programmable Custom Computing Machines, May
2015.

[11] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A quantitative
analysis on microarchitectures of modern cpu-fpga platforms,” in Proceedings of
the 53rd Annual Design Automation Conference, ser. DAC ’16, 2016, pp. 109:1–
109:6.

[12] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie, and J. Cong,
“Programming and runtime support to blaze fpga accelerator deployment at dat-
acenter scale,” in Proceedings of the Seventh ACM Symposium on Cloud Com-
puting, ser. SoCC ’16. ACM, 2016, pp. 456–469.

[13] J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu, “Cpu-fpga co-scheduling for
big data applications,” vol. PP, no. 99, 2017, pp. 1–4.

[14] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, May
1977.

[15] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy
Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, Sept 1952.

[16] J.-Y. Kim, S. Hauck, and D. Burger, “A Scalable Multi-Engine Xpress9 Com-
pressor with Asynchronous Data Transfer,” in Proceedings of the 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom Com-
puting Machines, ser. FCCM ’14, 2014, pp. 161–164.

[17] “Xeon+FPGA Platform for the Data Center,” https://www.ece.cmu.edu/
~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf, [Online; accessed 23-
Apr-2017].

[18] “Accelerating Datacenter Workloads,” http://fpl2016.org/slides/Gupta%20--%
20Accelerating%20Datacenter%20Workloads.pdf, [Online; accessed 23-Apr-
2017].


