AIM: Accelerating Computational Genomics through
Scalable and Noninvasive Accelerator-Interposed Memory

Jason Cong, Zhenman Fang, Michael Gill, Farnoosh Javadi, Glenn Reinman*
Center for Domain-Specific Computing, University of California, Los Angeles

ABSTRACT

Computational genomics plays an important role in health care, but
is computationally challenging as most genomics applications use
large data sets and are both computation-intensive and memory-
intensive. Recent approaches with on-chip hardware accelerators
can boost computing capability and energy efficiency, but are lim-
ited by the memory requirements of accelerators when processing
workloads like computational genomics. In this paper we propose
the accelerator-interposed memory (AIM) as a means of scalable and
noninvasive near-memory acceleration. To avoid the high memory
access latency and bandwidth limitation of CPU-side acceleration,
we design accelerators as a separate package, called AIM module,
and physically place an AIM module between each DRAM DIMM
module and conventional memory bus network. Experimental re-
sults for genomics applications confirm the benefits of AIM. Due to
the much lower memory access latency and scalable memory band-
width, our noninvasive AIM achieves much better performance
scalability than the CPU-side acceleration when the memory sys-
tem scales up. When there are 16 instances of accelerators and
DIMMs in the system, AIM achieves up to 3.7x better performance
than the CPU-side acceleration.

CCS CONCEPTS

« Computer systems organization — Special purpose sys-
tems; - Hardware — Memory and dense storage;

1 INTRODUCTION

Computational genomics has tremendous potential as a means of
providing customized medical care [18]. For example, rather than
using an array of chemotherapy drugs to treat cancer, genetic anal-
ysis can allow a physician to select a particular drug or treatment
that is appropriate for the particular pathology of the cancer. It can
also help with preventative treatment such that doctors can better
identify those diseases to which a patient is genetically susceptible.

In general, genomics applications can be classified into two main
categories: genome reconstruction and genomics diagnosis/analysis,
as illustrated in Figure 1. First, a patient has her DNA sequenced

*Zhenman Fang and Farnoosh Javadi made equal contribution and co-led this paper.
Email: {zhenman, farnoosh}@cs.ucla.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MEMSYS 2017, October 2—5, 2017, Alexandria, VA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5335-9/17/10...$15.00
https://doi.org/10.1145/3132402.3132406

Short reads

Population Group
Patient

Reconstruction

T T
e

e =
R

Reference Genomes
and Population Studies

AR R 5”55

X XX Health Professional

voow 2

Genome

Figure 1: Genomics application work flow: genome recon-
struction and genomics diagnosis/analysis.

to produce a collection of short reads, i.e., small pieces of 50-150
base pairs, since current DNA sequencing technologies are not
able to read the entire genome [36]. These short reads are then
reconstructed (e.g., alignment, mark duplication, insertion, and
deletion) to a whole genome and aligned to the canonical reference
genome. Second, the genome can then be analyzed in a variety of
ways [9]. On one hand, this genomics data from the patient can be
compared against the canonical reference genome to help a health
professional, in a clinical diagnosis, customize the patient’s medical
care. On the other hand, this genome can be compared against
other individuals’ genomes as part of a population study to help
clinicians and biomedical researchers better understand diseases.

Most genomics applications use extremely large data sets. Stor-
age for a single human genome occupies around 6 GB of space—and
that would first need to be reconstructed from a much larger pool
of short reads that take hundreds of GB space. For example, the
Burrows-Wheeler transform (BWT) [28], one core component of
genome reconstruction backward search, requires around 8 GB of
memory footprint. Furthermore, population analysis based on ge-
nomics data often requires the comparison of multiple genomes [9].
This makes genomics applications not only computation-intensive,
but also memory-intensive, and therefore it usually takes a couple
of weeks to complete the computation [48].

To make computational genomics useful in a clinical setting,
we need to reduce the computational overhead of obtaining and
using genetic data to the point where it can become a common
medical practice. Among various acceleration candidates such as
multicore, GPU, and customized hardware acceleration, the cus-
tomized accelerator-rich architecture proves to be one of the most

https://doi.org/10.1145/3132402.3132406

Table 1: Last-level cache (LLC) miss rate for genomics appli-
cations running on CPU-side acceleration.

Applications | BWT | DynProgram | MergeSort | FastEpistasis

LLC miss 61% 68% 51% 72%

energy-efficient, high-performance alternatives [10, 11]. However,
even though the computation aspects can be satisfied through cus-
tomized accelerators, the memory requirements of genomics appli-
cations are such that the CPU-side acceleration would easily starve
the accelerators due to long memory access latency and insufficient
memory bandwidth [16].

To better understand the memory behavior of genomics applica-
tions, we profile the latest genomics sequencing pipeline running
on CPU-side accelerators with a single DIMM (detailed experimen-
tal setup will be presented in Section 4). As shown in Table 1, the
four genomics applications studied in this paper have high cache
miss rates, where caches are unable to help feed accelerators the
data in time due to a lack of exploitable locality. As a result, a near-
memory acceleration can help reduce the memory access latency.
In addition, these genomics applications usually have very high
memory bandwidth requirements (around 200GB/s). Therefore, the
acceleration approach has to achieve scalable memory bandwidth
by increasing the size of the memory systems (i.e., introducing
more DRAM DIMMs). More quantitative evaluation of the mem-
ory requirements of genomics applications will be presented in
Section 2.2.

To achieve lower memory latency and scalable memory band-
width, we investigate near-memory acceleration and aim to achieve
minimum invasiveness to existing systems. Figure 2 shows the con-
ventional CPU and memory architecture connected by the memory
network. There are a variety of ways one could integrate accel-
erators closer to the memory DIMMs. For example, prior work
integrated accelerators at the memory controller [44], at the DIMM
level [40], or even at the DIMM bank level [26]. Integrating accel-
erators into a processor or DIMM die is complex, and getting a
commercial-grade, highly efficient accelerator packaged into the
same die as a commercial-grade, highly efficient conventional core
or DIMM requires both a large engineering effort and cooperation
between industry players. These factors together make an argument
for moving accelerators that perform streaming style computation
over large volumes of data into a separate die package entirely, and
moving toward a more modular design.

Accelerator

Memory Network

Figure 2: Conventional CPU (and memory controller) and
memory architecture connected by the memory network.

In this paper we propose an accelerator-interposed memory
(AIM), where the accelerator is located on an AIM module that is

physically placed between the memory DIMM and the memory
network. In addition, to achieve better communication between
different AIM modules, we further propose a multi-drop AIM bus
that connects them together. In summary, AIM offers the following
advantages.

1. Noninvasive AIM design. The AIM design is noninvasive to
the existing CPU, memory controller, memory bus, and DIMMs.
It simplifies the authorship of customized accelerators as a sep-
arate package. A set of AIM modules can be introduced to a
machine that consists of off-the-shelf everything and runs off-
the-shelf software. The implemented accelerators also commu-
nicate with other devices using the well-established protocols
that the CPU uses to communicate with the memory, which
limits the need for testing communication protocols.

2. Lower memory access latency. Since the AIM module is
much closer to its associated local DIMM, the access latency to
the local DIMM is much lower (around 17 nanoseconds instead
of the original 112 nanoseconds, or even worse when it exceeds
the memory network bandwidth). In addition, inter-DIMM ac-
cess latency is also much lower through the efficient AIMBus
(an additional 10 nanoseconds if no congestion in AIMBus).

3. Scalable acceleration and memory bandwidth. Instead of
integrating many instances of each accelerator into the CPU,
AIM distributes each accelerator instance between each DIMM
and the memory network. Not only the accelerators are easier to
scale but also it can avoid any bottleneck at the memory network
and the artificial CPU pin-out limit. Moreover, the memory
capacity and bandwidth can scale well with the aggregation
of all DIMM interfaces when the application memory layout is
optimally partitioned.

4. Shared memory between AIM modules and CPU. The AIM
modules literally use the same memory as the CPU; thus, shared
memory is automatic, without the need for additional costly
hardware abstraction.

While conceptually simple, there are several challenges to achiev-
ing such a design. This paper discusses how we met these challenges,
and shows experimentally (based on simulation) that a system fea-
turing AIM can help bring the promise of computational genomics
to the clinical setting.

The remainder of this paper is organized as follows. We first give
an overview of the genomics applications we chose and present
their memory requirements in Section 2. Then we propose the AIM
architecture in Section 3, and discuss how AIM provides scalable
memory capacity and bandwidth, minimizes system impact, and
optimizes memory layout, and how software will be able to make
use of AIM. We describe the evaluation methodology of AIM in
Section 4. We present the acceleration results using AIM for ge-
nomics application in Section 5. Section 6 discusses relevant prior
art. Finally, we conclude in Section 7.

2 GENOMICS APPLICATIONS AND THEIR
MEMORY REQUIREMENTS

Computational genomics has promoted applications in many
fields, such as medicine, biotechnology and genome reconstruc-
tion. The field also includes studies of intra-genomics phenomena
such as epistasis and other interactions between loci within the

genome [36]. We choose four representative computational ge-
nomics applications: the Burrows-Wheeler transform (BWT) and
dynamic programming (dynProgramming) are used for genome
reconstruction; merge sort and fast espistasis are used for genome
diagnosis/analysis. Then we measure their memory requirements
to motivate our AIM design.

2.1 Genomics Applications

In this subsection we briefly describe the four representative ge-
nomics applications.

Burrows-Wheeler Transform. One of the main algorithms
for aligning short reads back to a human genome is the Burrows-
Wheeleer transform (BWT) [28, 30]. It matches billions of short
strings (about 50-150 characters) to a reference genome which is
about 3 billion characters long. We divide the reference genome
and those short reads among all the DIMMs. Each AIM module
will align its portion of short reads to the applicable portion of the
reference genome. Whenever an AIM module needs data in the
reference genome that is not in its own local DIMM, it will use the
AIMBus to access the remote DIMM that has the data.

Dynamic Programming. One of the common problems in bi-
ology is to estimate the similarity between short reads and the
reference genome, or between DNA and protein sequences [20].
One of the main algorithms for string comparison and finding
similarity is dynamic programming [2]. It relies on solving larger
problems starting with a set of small sub-problems. We divide the
total DNA and protein sequences into different DIMMs. Each DIMM
performs the comparison of a subset of sequences using the dy-
namic programming algorithm for each pair. AIMBus is used to
access a remote DIMM when the sequence is not in the local DIMM.

Merge Sort. Merge sort, a comparison-based sorting algorithm,
is another commonly used algorithm in genomics. For example,
it is used in SAM (Sequence Alignment/ MAP) format for storing
large nucleotide sequence alignments [29]. Merge sort is a divide-
and-conquer algorithm. It divides the input array in two halves,
sorts for the two halves, and then merges the two sorted halves. It
is composed of multiple phases, where the first phase is completely
parallel, and each AIM module sorts the data of its attached local
DIMM. In the following phases, data from every two DIMMs are
merged together into one DIMM through the AIMBus, and only one
AIM module will perform the sort. As a result, the parallelism factor
is cut down by two. This will continue until all data are merged
and sorted by one single AIM module.

Fast Epistasis Detection. Genetic interactions called epistasis
have been widely studied. It can have an influence in cancer [4],
hypertension [45], obesity [38] and other complex diseases [32].
However, the detection of gene-gene interactions in genome-wide
association studies (GWAS) needs a massive amount of computation
and data. The number of single-nucleotide polymorphisms (SNPs)
is mostly on the order of 10°-107 in humans and the total number
of pairs of SNPs that need to be studied can be on the order of
1012-10'* [24]. In addition, data will be gathered on thousands of
individuals. We leverage the fast epistasis code from [24]. In this
algorithm, we store the SNPs through all the DIMMs. Each AIM
module will find the correlation of the SNP pairs inside its local

Computation Non-overlapped Communication
100%
80%
@
£ 6o%
E
E
g 40%
=
20%
0%
BWT Dynamic Merge Sort FastEpistasis
Programming

Figure 3: Percentage of computation and non-overlapped
communication in the total execution time for genomics ap-
plications using CPU-side acceleration.

DIMM, and for the pairs that are not in one DIMM, the AIMbus
will be used to get the data from a remote DIMM.

2.2 Memory Requirements of Genomics

In this section we characterize the memory requirements for the
genomics applications that we chose.

Table 2: Memory footprint for genomics applications.

Applications | BWT | DynProgram | MergeSort | FastEpistasis

Memory size | 8 GB | 8 GB 6 GB 4GB

1. Table 2 summarizes the total amount of data each application
uses. To make the simulation time-affordable, we limit the size
within 8GB for each application. In real applications, the memory
footprint could be much larger.

2. To motivate the design of AIM, in addition to the last-level cache
miss rate in Section 1, we further profile the percentage of pure
computation and non-overlapped memory access in the total ex-
ecution time. The data is collected for the CPU-side acceleration
baseline with 16 instances of accelerators and DIMMs, detailed
in Section 4. Shown in Figure 3, more than 70% of the total exe-
cution for these genomics applications is spent on the memory
system after the computation is accelerated using customized
accelerators. This implies that the near-memory acceleration
can bring much performance benefit since it achieves a much
lower memory access latency.

3. We also calculate the targeted bandwidth for these genomics
applications using the same experimental setup assuming the
memory access overhead is removed. As shown in Figure 4, the
targeted bandwidth is from 168GB/s to 202GB/s.! However, the
actual achieved bandwidth is less than 50GB/s due to the limited
memory network bandwidth.

!Note that we limit the size of our applications for simulation purposes. For real
applications with larger memory access sizes, the targeted bandwidth could be even
higher.

& Bandwidth Targeted Bandwidth Achieved

200
180
160
140
120
100

80

Bandwdith [GB/s]

60 1 1
' .
0
BWT

Figure 4: Targeted bandwidth and achieved bandwidth for
genomics applications using CPU-side acceleration.

%)
S

Dynamic Programming ~ MergeSort FastEpistasis

3 ACCELERATOR-INTERPOSED MEMORY

To achieve scalable near-memory acceleration, we propose a non-
invasive accelerator-interposed memory (AIM), as illustrated in
Figure 5. Because the design of accelerators has been widely stud-
ied [10], we will primarily focus on how to interpose the accelera-
tors near the existing memory system. First, we discuss the design
philosophy of AIM, including how to provide scalable memory
capacity and bandwidth, minimize system impact, and optimize
the memory layout. Then we present the detailed implementation
of the AIM modules and AIMBus. Finally, we illustrate how to
program the applications for the AIM system.

Figure 5: An overview of the AIM architecture.

3.1 AIM Design Philosophy

3.1.1 Provide Scalable Memory Capacity and Bandwidth. As
characterized in Section 2, most genomics applications have a large
memory footprint and high bandwidth requirement, which is ex-
acerbated by accelerators that push the already-large amount of
memory accesses into a much shorter time period. Therefore, our
AIM design has to place accelerators closer to memory in such a

way that we can scale both memory capacity and bandwidth by
increasing the number of DIMMs in the system.

To achieve high scalability, we propose to tie an AIM module to
each DIMM, as shown in Figure 5. Each AIM module consists of a
separate package that attaches to a conventional DIMM interface on
the motherboard. It is placed between the DIMM and the memory
network to achieve lower memory access latency and avoid the
bandwidth limit of the memory network. Each AIM module also
acts as a pass-through for communication between the memory
controller of the CPU and the DIMM to which it is attached.

To enable efficient communication between different AIM mod-
ules, we further connect AIM modules via a separate sideband
interconnect much like the SLI connection used between some
graphic cards [3]. We call this sideband interconnect the AIMBus:
it is a multi-drop bus in which several AIM modules can simulta-
neously connect to a single channel. AIMBus arbitrates among the
AIM modules to determine which one may broadcast to other AIM
modules.

3.1.2 Minimize System Impact. To achieve a noninvasive design,
we want to make use of off-the-shelf hardware for CPU, DIMMs,
and the system motherboard to minimize design impact. There are
already a number of constraints regarding the way in which the
CPU and main memory interact over the memory network, and
we want to be sure that these constraints are not broken by our
interposing of accelerators between DIMMs and the motherboard.?

First, we need to ensure that memory requests from the CPU
are handled correctly, even when the DRAM is busy handling an
access request issued from an AIM accelerator. The current DRAM
transaction cannot be interrupted, and yet the CPU memory con-
troller is expecting a response at a specific time. To achieve this,
we make use of the well-established error correcting codes (ECC)
to return a dummy data value that will appear as an error to the
memory controller. This will cause the memory controller to retry
the request again. And the accelerator will stall subsequent requests
for a period of time to ensure that the DRAM is not busy during the
retry. To handle the additional latency from passing CPU requests
through the AIM module, we intentionally advertise the DRAM
access latency to the memory controller as being slower than it
actually is. Since we only fake the ECC when there is contention
between CPU and AIM accelerators, the fake ECC approach has
little impact on the ECC coverage in our experiments.

Second, AIM should work within the confines of the existing
memory model. To achieve this, AIM maintains a particular address
range for the CPU to control AIM modules. We call this region the
accelerator control memory region (ACMR). This ACMR is reserved
such that the operating system is unable to allocate it for other
purposes. There are two types of ACMR: configuration ACMR and
polling ACMR. More details will be presented in Section 3.4.

3.1.3 Optimize Memory Layout. At a high level, a system us-
ing AIM is structured as a hierarchy, with the CPU as the master
and AIM modules serving as workers. Each AIM module and its
attached local DIMM acts as a small independent system capable of
independent computation, while the CPU views all of the memory

2We are currently exploring an implementation of this technology through a collabo-
ration with Micron.

DIMM Connector
- Memory Access Filter
= —
§ g — | Accelerator
:45 Block

Configuration Filter

Memory Network Connector

Figure 6: Internal design of a single AIM module.

in the entire system as shared memory. When one AIM module
wants to access data in another remote DIMM, it uses the AIMBus.

Since the memory access latency to the local DIMM is faster than
the remote DIMM and is not limited by the AIMBus bandwidth,
our goal is to optimize the memory layout so that most of the data
accessed by each AIM module is in the local DIMM, and there is
minimum communication between different AIM modules. The
process of mapping data to DIMM:s is conceptually similar to data
tiling [37]. We currently partition data onto AIM for each applica-
tion manually as explained in Section 2.1. In our future work, we
will investigate compiler support for automatic partitioning.

3.2 AIM Module Implementation

To make the AIM module more flexible for different accelerators
and applications, we use an FPGA-based package that can be repro-
grammed for different accelerators. Figure 6 presents the modular
design of an AIM module that can be easily plugged into exist-
ing systems. The key internal components of an AIM module are
described as follows. In addition, each AIM module also has a mem-
ory network connector and DIMM connector to connect with the
conventional memory network and DIMM, respectively.

1. Configuration filter. The configuration filter interfaces with
the CPU (via the memory network) and the accelerator block
inside the AIM module. When a memory request arrives from
the memory network (i.e., CPU), the configuration filter checks
whether the address is in the configuration ACMR. If so, the
request will be redirected to the configuration buffer of the as-
sociated accelerator block. Otherwise, the request is considered
a conventional memory request from the CPU, and it will be
forwarded to the memory access filter. Since the configuration
filter simply examines whether the address is within the ACMR
range, it can be done using two comparators in parallel. This
can be accomplished in a single cycle and achieves a 500MHz
clock frequency on an FPGA [46]— i.e., 2 nanoseconds.

2. Accelerator block. This consists of both the accelerator for
computation and a configuration buffer used to process the
memory requests for the configuration ACMR. We omit the
details of the accelerator design because it has been widely
studied [10, 11, 15, 17].

3. Memory access filter. The memory access filter gets memory
requests from the CPU via the configuration filter, the acceler-
ator block within the local AIM module, and the AIMBus for
remote AIM modules. Whenever a memory request reaches the
memory access filter, it routes and tracks the request source

(i.e., CPU, AIM accelerator) in a memory access table. If an ac-
celerator requests a memory access that is not in the range of
its attached DIMM, the memory access filter routes it to the
AIMBus connector. The AIMBus connector then broadcasts the
request to the remote DIMMs through the AIMBus. Whenever
the memory response comes back from the attached memory
DIMM, the memory access filter checks its memory access table
to find the associated outstanding memory request and forwards
the response to the request source. The memory access filter
prioritizes requests in order of most important to least impor-
tant: CPU request, local accelerator request, remote request
from the AIMBus. We did not find any starvation in any of our
single-application experiments by using this simple arbitration
mechanism. In future work, we will investigate more advanced
mechanisms to avoid starvation for the multi-program environ-
ment, especially when both the CPU and the AIM modules are
running some applications simultaneously.

The memory access table is organized similar to miss status
holding registers (MSHRs), where an incoming request allocates
an entry and a satisfied request invalidates the table entry. Each
entry in the table has a tag to indicate the source for the par-
ticular in-flight request. The memory access table is sized as
the maximum number of concurrent pending access requests
that the attached DIMM module can support. Since the memory
access filter uses a single flag indicating that the pending request
is from the CPU or the AIM module, it can also be accomplished
in a single cycle and achieves a 500MHz clock frequency—i.e., 2
nanoseconds.

4. AIMBus connector. The AIMBus connector is a port to con-
nect the AIM modules to the AIMBus. This AIMBus connector
broadcasts any memory requests of the AIM accelerator that fall
outside of the attached DIMM. All AIM modules on the AIMBus
will listen for the request and determine whether or not the
requested address is on their local DIMM. If so, the AIM module
will service the remote request and broadcast the result back
on the AIMBus for recipient by the originally requesting AIM
module. Only one of the AIM modules can be the bus master at
any time, and we make use of a polling-based arbitration policy.
Quantitative evaluation of the average memory access latency
will be presented in Section 5.2.

3.3 AIMBus Implementation

We propose adding an AIMBus shared among all the AIM modules
in order to enable efficient inter-DIMM communication, not to
limit the accelerators to only using their attached DIMM module,
and to increase data capacity in data transmission. We use a multi-
drop AIMBus in which several AIM modules can be simultaneously
connected to a single channel. Multi-drop buses have the advantage
of simplicity and extensibility. Based on [5, 41, 43], we can have
multiple devices (i.e., AIM modules) connecting to the multi-drop
AIMBus. The master will send the command and if slaves do not
respond within a certain time-out (silence), the master may retry
the same command or send a different command until it receives
a response. An arbitration process will determine which device
should be the recipient. Every message sent over the multi-drop
AIMBus is received by all AIM modules and ignored by all except

Table 3: Detailed parameters of the evaluated CPU-side acceleration and memory-side acceleration architecture.

Copy of accelerators 1,2,4,8,16

Shared L2 (LLC) cache | 32 banks, 8MB, 8-way set associative, 10 cycles latency

Coherence protocol

MOSI protocol for CPU-side acceleration

FPGA region

FPGA from Xilinx Zynq 702 board. 52K LUTS, 106K FF, 140 BRAM, 220 DSPs

DRAM memory

DDR3-1600 DIMMs, 12.8 GB/s peak bandwidth, 11.25 ns CAS latency
1, 2, 4, 8, 16 DIMMs, total capacity of 8 GB for all cases except MergeSort

Memory network

a DIMM tree topology, the root has 51.2 GB/s peak bandwidth for CPU, four channels in the sub-tree,
each sub-tree channel has 12.8 GB/s peak bandwidth and supports up to 4 DIMMs

AIMBus

3.2 GB/s, 6.4 GB/s, 12.8 GB/s (default), 25.6 GB/s peak bandwidth, multi-drop bus

the single recipient. We used the polling method in which each
AIM module should be polled around every 10 nanoseconds. It can
be done by the POLL command or any other appropriate command.
Though current technology may limit the bandwidth of a single-
channel multi-drop bus, we believe we will have higher bandwidth
in the future. For experimental purposes, we use an AIMBus with
a bandwidth of 3.2 GB/s, 6.4 GB/s, 12.8 GB/s, and 25.6 GB/s to
demonstrate the benefits of AIMBus with an increasing bandwidth
trend. Note that in our current settings, each DIMM has different
memory address regions, so there is no need for the coherency
requirement of AIMBus.

3.4 AIM Programming

In a system using AIM, the CPU serves as the master and AIM
modules serve as workers. Next we present how to launch and
poll/end the AIM modules.

Launching AIM modules. To configure the AIM modules
(workers) before performing any task, we maintain a particular
memory address range called configuration ACMR (accelerator
control memory region), which is primarily used for the configura-
tion of accelerators and for communication of control signals. In
order to protect against the OS allocating regions of the ACMR as
regular program memory, a system featuring AIMs indicates that
the ACMR is memory mapped I/O for a dummy device. Memory
requests to the ACMR are routed independently from the normal
memory requests; this is done by the memory controller that over-
rides the DIMM select bit.

Polling/ending AIM modules. Because the memory controller
does not support unsolicited responses from memory, an AIM mod-
ule cannot send information to the CPU without having a CPU
request (read) to its polling ACMR. In theory, requiring the CPU to
poll the AIM modules for progress updates (e.g., to see whether a
task has been completed) may seem highly inefficient. In practice,
however, the inefficiency of polling is offset by the long-running
nature of the data parallel computations over large volumes of data,
combined with a quite predictable accelerator execution time [10].
As a result, the AIM module can generate an estimated time of the
task execution. The CPU polls current estimates, then waits until
the estimated time has elapsed before polling again. This process
repeats until a poll results in a notification that the task is complete.
As a result, the polling of AIM modules is very effective.

Software running on AIM. As presented above, software run-
ning on the CPU communicates with AIM modules by reading and
writing memory within the ACMR region. To make it easier to

program software running on AIM, we use virtual address for the
accelerators. One issue is the address translation for the acceler-
ators. To minimize the address translation overhead, we use the
large page size (2MB) and leverage the CPU TLB and OS to trans-
late virtual address to physical address. As a result, this address
translation overhead is negligible. Another issue we have to handle
is the data coherency for the ACMR. To make the data coherent
between the CPU and AIM modules, a cache block mapping to the
ACMR must be flushed from the cache into the memory before any
change is made visible to the AIM module. This cache flush can
be done through an explicit invalidation by the software running
on the CPU. Once flushed, the cache block is written to memory
and visible to the relevant AIM module(s). The exact protocol for
interacting between the CPU software and the AIM accelerators
is application-specific, and thus beyond the scope of this section.
Instead, our methodology focuses on extending a mechanism for
communication, rather than making demands on a particular com-
munication protocol.

4 EVALUATION METHODOLOGY

In our experiments we simulate the AIM module implementations
according to the reconfigurable low-end FPGAs; the retail price of
a low-end Zynq FPGA board (including an ARM processor, DRAM,
and other components) is around $100. Note that the Zynq FPGA
chip itself can be less than $10 at volume purchase, which is rela-
tively cheaper than DRAMs. We evaluate both the recent CPU-side
acceleration [10, 11] and our memory-side acceleration (AIM). In
both cases, we make use of the same set of accelerators—the only
difference is that the accelerators are within a CPU chip or an AIM
module. We chose this point of comparison, instead of a comparison
to a conventional CPU without accelerators, since there has been ex-
tensive prior work illustrating the performance and energy benefits
of CPU-side acceleration over conventional CPU [10, 11, 15, 17]. We
thus felt that it would be a more meaningful study if the comparison
was made to a more recent CPU-side acceleration.

Table 3 lists the detailed architecture parameters. To illustrate the
better scalability of AIM, we demonstrate scaling from 1 to 16 DDR3
DIMMs. Though we can scale the memory capacity when increasing
the number of DIMMs, we keep the total memory capacity at 8GB
for a fair comparison. 3> Each AIM module is implemented using a
low-end FPGA such as the one used in the Xilinx Zynq 720 board.
For the CPU-side acceleration, we also scale the copy of accelerators

3MergeSort is an exception where we use 8 GB per DIMM because it keeps merging
data from two DIMMs to one DIMM.

BWT Dynamic Programming
41DIMMs =2DIMMs ~4DIMMs =8DIMMs * 16 DIMMs “IDIMM ®2DIMMs ~ 4DIMMs “8DIMMs “ 16 DIMMs
16 12
14 |
10 -
12 -
| 8 -
g ! 5
= =
g 8 - g ¢ |
2 (=%
n 6 - 2]
4 s
4 | || s
2 +—= B — — — — - 2Tl]]]] B
0 - 0 -
CPU-side AlMw/o AlMw/ AIMw/ AIMw/ AIMw/ CPUside AlMw/o AIMw/ AIMw/ AIMw/ AIMw/
acceleration AIMBus ~ 3.2GB/s 6.4GB/s 12.8GB/s 25.6 GB/s acceleration AIMBus 32GB/s 64GB/s 12.8GB/s 25.6 GB/s
AIMBus AIMBus AIMBus AIMBus AIMBus AIMBus AIMBus AIMBus
MergeSort FastEpistasis
“1DIMM “2DIMMs ~4DIMMs “8DIMMs * 16 DIMMs “]1DIMMs =2DIMMs ~4DIMMs &8DIMMs 16 DIMMs
8 16
14 .
6 12 -
2 10 =
:
8 4 B) 8 B
=3 &
wn 6 —
2 — — - 4 — =
I I I I I >R - - - | s
0 - 0!
CPU-side AIMw/o AIMw/ AIMw/ AIMw/ AIMw/ CPUside AlMw/o AIMw/ AIMw/ AlMw/ AIMw/
acceleration AIMBus 3.2GB/s 6.4GB/s 12.8GB/s 25.6 GB/s acceleration AIMBus 3.2GB/s 6.4GB/s 12.8GB/s 25.6 GB/s
AIMBus AIMBus AIMBus AIMBus AIMBus AIMBus AIMBus AIMBus

Figure 7: Performance scalability of CPU-side acceleration and AIM with different AIMBus settings for genomics applications,

as the number of accelerators and DIMMs increases from 1 to 16.

from 1 to 16 within a single socket. All the CPU accelerators share a
coherent 32-banked 8MB last-level cache (L2). For the conventional
memory network, we use a DIMM tree topology: the root has 51.2
GB/s peak bandwidth for CPU; there are four channels in the sub-
tree where each sub-tree channel has 12.8 GB/s peak bandwidth
and supports up to four DIMMs. For our proposed AIMBus, we vary
the AIMBus peak bandwidth with 3.2 GB/s, 6.4 GB/s, 12.8 GB/s,
and 25.6 GB/s to demonstrate the impact of AIMBus [41]. Note
that the idea of AIM is not limited to DDR3, it can be applied to
DDR4 or GDDRS5 as well. And the AIMBus can also be improved
with the application of future technologies. We use this setting for
experimental purposes only.

We model the above architecture by extending the widely used
Simics [31] and GEMS [33] simulator. We used the Xilinx Vivado
HLS [14] to calculate the latency and power of the integrated FPGA
accelerators. We use the characteristics of a PCle bus to estimate
the power of the AIMBus [21] and DRAMPower [6] to model DIMM
power consumption. A set of four representative genomics appli-
cations described in Section 2 are used to illustrate the benefits of
our proposed AIM system.

5 AIM RESULTS

In this section we evaluate the performance gains for the ge-
nomics applications on AIM compared to the CPU-side acceler-
ation. We first demonstrate the overall performance scalability
of AIM when there is an increasing number of DIMMs. We also
vary the peak bandwidth of the AIMBus. To gain deep insights
into the performance gains, we compare the average memory ac-
cess latency, aggregate memory bandwidth, and memory network
utilization/congestion between AIM and CPU-side acceleration.
Finally we present the overall energy savings of AIM.

5.1 Overall Performance Scalability

We demonstrate the overall performance scalability of AIM com-
pared to the CPU-side acceleration when there is an increasing
number of DIMMs (and associated CPU accelerators or AIM mod-
ules) from 1 to 16. To illustrate the impact of the AIMBus design, we
include the following settings with different AIMBus bandwidths:
1) AIM without AIMBus, 2) AIM with 3.2 GB/s AIMBus, 3) AIM
with 6.4 GB/s AIMBus, 4) AIM with 12.8 GB/s AIMBus (this is the
default version we will use in the rest of this paper), 5) AIM with

2 DIMMs 4 DIMMs

&
S 60% - —
=
S
3 40%
-9
20% -
0% T T T

8 DIMMs 16 DIMMs

BWT Dynamic Programming
¥ Direct access =~ AIMBus Access H Direct Access AIMBus access
100% 1 | 100% T I
80% - — 80% —
9 L
1) 1)
8 60% | & 60% - —
= =
S s
g 40% 5 40% -
) &~
20% - 20% | E
0% L T T T 0% - T T T
2DIMMs 4DIMMs & DIMMs 16 DIMMs 2DIMMs 4 DIMMs 8 DIMMs 16 DIMMs
MergeSort FastEpistasis
" Direct Access AIMBus access ¥ Direct Access AIMBus access
100% | 100%

Percentage

80% -
60% -
40% -
20% -
0% - w \ \

|

8 DIMMs 16 DIMMs

2 DIMMs 4 DIMMs

Figure 8: Percentage of memory accesses that use the local DIMM and remote DIMM, as the number of DIMMs increases.

25.6 GB/s AIMBus. All performance is normalized to the one CPU-
side accelerator with one DIMM baseline. Figure 7 presents the
detailed performance speedup for the genomics applications.

There are a number of observations that can be extracted from

Figure 7. For ease of description, we take BWT as an example since
all benchmarks (except merge sort) have results similar to that of
BWT. Merge sort has limited parallelism in later merge steps, and
thus has marginal performance speedup for AIM over CPU-side

acceleration.

1.

For the one-DIMM case, AIM achieves around 2x performance
speedup compared to the CPU-side acceleration baseline, mainly
because the lower latency (around 17 nanoseconds) is achieved
by moving the accelerator closer to the DIMM. Detailed memory
access latency numbers with increasing number of DIMMs are
presented in Section 5.2.

. When the number of DIMMs increases, the performance of

CPU-side acceleration does not scale well when exceeding four
DIMM:s. It is mainly limited by the memory network bandwidth
and pin-out that connects the CPU to the memory modules.
Section 5.3 demonstrates a more quantitative evaluation of the
memory network utilization.

. The performance of AIM without AIMBus usually shows slightly

better performance compared to the CPU-side acceleration base-
line, because for most of the memory accesses, the AIM module
accesses its associated local DIMM and does not need to go
through the memory network. But we find that the performance

is still not satisfactory. The main reason is that for any remote
DIMM access between DIMM 1 and DIMM 2, the request must
go from DIMM 1 to the CPU and then go to DIMM 2. Then sim-
ilarly, the response goes from DIMM 2 to the CPU and finally
goes to DIMM 1. This incurs a very long inter-DIMM access
latency. Figure 8 presents the local and remote DIMM access
percentage for each genomics application. With the number of
DIMMs increasing, the percentage of remote memory accesses
increases significantly. This drives the need for AIMBus which
can achieve a much lower remote memory access latency (with
an additional 10 nanoseconds if no AIMBus congestion).

. The performance for AIM with AIMBus scales linearly with the

increasing number of DIMMs, and can achieve a much better
speedup compared to AIM without AIMBus. When the band-
width of AIMBus increases from 3.2 GB/s to 25.6 GB/s, the abso-
lute performance speedup keeps increasing. For the default 12.8
GB/s AIMBus bandwidth, it can achieve up to 12.4x performance
speedup with 16 DIMMs compared to the CPU-side acceleration
with one DIMM as baseline. Even compared to the CPU-side
acceleration with 16 DIMMs, AIM with 16 DIMMs can achieve
up to 3.7x speedup with a 25.6 GB/s AIMBus.

5.2 Average Memory Access Latency

The average memory access latency for BWT backward search is
shown in Table 4. In the CPU-side acceleration baseline, a sharp

BWT

@m==] DIMM e==2 DIMMs 4 DIMMs ®==8 DIMMs “===16 DIMMs

100%

80%

60%

40%

20%

Memory network utilization

0% T T T T
0 0.2 0.4 0.6 0.8 1

Dynamic Programming

@m==] DIMM ®==2 DIMMs
100%

4 DIMMs ®==8 DIMMs “===16 DIMMs

80%

60% -

40%

20%

Memory network utilization

0% :
0 0.2 0.4 0.6 0.8 1

@m==] DIMM ®==2 DIMMs 4 DIMMs ®==8 DIMMs “===16 DIMMs

100%

80%

60% L

40%

20%

Memory network utilization

0%

0 0.2 0.4 0.6 0.8 1
Execution time percentage

Execution time percentage Execution time percentage
MergeSort FastEpistasis

@==] DIMM ®===2 DIMMs 4 DIMMs ®===g DIMMs “===16 DIMMs

100%

80%

60%

40%

Memory network utilization

0 0.2 0.4 0.6 0.8 1
Execution time percentage

Figure 9: Memory network bandwidth utilization for the CPU-side acceleration baseline: congestion after 4 DIMMs.

Table 4: Average memory access latency in nanoseconds for
the BWT application (similar for others).

“——BWT
100%

Dynamic Proramming ~ ==MergeSort ~ =—FastEpistasis

Number of DIMMs 1 2 4 8 16

CPU-side acceleration (ns) 112 | 113.5 | 130.5 | 237.5 | 487

80%

AIM w/ 12.8 GB/s AIMBus (ns) | 17 | 19 20.1 | 23

27.5

increase in memory latency is observed once the memory wall is
hit. As more accelerators and DIMMs are added to the CPU-side
acceleration, the pressure on the memory system increases. When
it exceeds the available memory network bandwidth, all additional
accesses result in a sharp increase in memory access latency, as
accesses begin to build up behind the memory controller. This re-
sults in a reduction in per-accelerator performance, as an increased
number of accelerators share the limited bandwidth. In contrast, in
the system with AIM (and 12.8 GB/s AIMBus by default), many of
the accesses are local to the associated DIMM which only exploits
around 17 nanoseconds. Only remote DIMM accesses have to com-
pete for the bandwidth of the AIMBus, which still incurs a much
shorter latency because different DIMMs are directly connected by
the AIMBus and do not go through the conventional memory net-
work. The average memory access latency of AIM with 12.8 GB/s
AIMBus is also shown in Table 4. It is much shorter than the mem-
ory access latency of CPU-side acceleration with the number of
DIMMs increasing. While not shown, other benchmarks exhibited
similar memory access latency.

60%

40%

Memory network utilization

20%

0% T T
0.4 0.6 0.8 1
Execution time percentage

Figure 10: Low memory network bandwidth utilization for
AIM with 12.8 GB/s AIMBus using 16 DIMMs.

5.3 Memory Network Bandwidth Utilization

In most cases, our CPU-side acceleration baseline system encoun-
ters the memory wall after adding more than four DIMMs. To
illustrate this, we profile the utilization of the memory network
bandwidth of the CPU-side acceleration in Figure 9. Even though the
accelerator resources are scaled up in the CPU side as the number
of DIMMs are scaled up, no performance improvement is observed
once the memory network is fully saturated. Figure 10 illustrates

 Targeted Bandwidth Achieved Bandwidth

200

150

Bandwidth [GB/s]
)
=]

v
S

Dynamic
Programming

MergeSort FastEpistasis

Figure 11: Achieved aggregate memory bandwidth for AIM
with 12.8 GB/s AIMBus using 16 DIMMs: around 70% of tar-
geted bandwidth.

a similar measurement of the memory network utilization for sys-
tems featuring AIM with 16 DIMMs. As clearly shown, nearly all
of the memory network traffic is eliminated while executing the
benchmark.

54 Aggregate Memory Bandwidth

To further demonstrate the benefits of AIM, we present the actual
aggregate memory bandwidth of AIM with 12.8 GB/s AIMBus us-
ing 16 DIMMs. As shown in Figure 11, it achieves around 70% of
the targeted bandwidth, which is much better than the CPU-side
acceleration shown in Figure 4. Note that the peak bandwidth we
provide for AIM with 16 DIMMs is 16*12.8GB/s = 204.8 GB/s, but
usually it is impossible to achieve this peak bandwidth.

5.5 Energy Savings

Finally, we also present the overall energy savings of AIM with
12.8 GB/s AIMBus over CPU-side acceleration using 16 accelerators
and DIMMs in total. As shown in Figure 12, AIM achieves 1.3x to
3.3x energy savings over CPU-side acceleration for different appli-
cations. Most of the energy savings come from the performance
improvement as presented before. There is little power saving in
AIM although it almost eliminates the conventional memory net-
work utilization. The reason is that it introduces an AIMBus which
consumes comparable power to that of the memory network.

6 RELATED WORK

Early work such as CRAM [13], IRAM [35] and PIM [40] integrate
compute engines directly into DRAM modules. These architectures
are useful for simple operations, such as vector addition, but not
for more complex applications. Although these architectures have
very high bandwidth, their cost and design complexity are high due
to the integration of accelerators directly into the internal structure
of DRAM. Such designs are less able to leverage economy of scale
to keep DRAM prices low. In contrast, our design is modular and
does not require any modification to an existing system.

More recently, some work like Copacobana [39] integrates FPGA
accelerators directly into DIMMs. However these designs require

35

N
¥} wn

Energy savings
&

0.5

0---.

Dynamic Programming ~ MergeSort FastEpistasis

Figure 12: Energy savings for genomics applications of AIM
over CPU-side accelerators for 16 accelerators/DIMM:s.

a change to the memory controller to allow it to interact with
the modules. These modules are mostly useful for embedded and
specialized systems. In contrast, our system does not need any
modification to the existing system. There are some commercial
approaches that add FPGA as a separate socket into the Intel Xeon
server for acceleration and share the same memory. Examples in-
clude the Convey machines [12] and the Intel-Altera Heterogeneous
Architecture Research Platform (HARP) [19]. However, these FPGA
accelerators still incur regular long memory access latency.

Most recent studies focus on 3D stacked memory, such as the
Hybrid Memory Cube (HMC) [22] and High-Bandwidth Mem-
ory (HBM) [25], which present an entirely new category of high-
performance memory with large bandwidth and lower latency.
There has been some work that places hardware accelerators in
such 3D stackable memories. For example, [47] suggested placing
hardware accelerators at the bottom layer of a 3D stacked memory
and accelerating multiple big-data workloads like sorting, string
matching and memcopy. [1] suggested combining a DRAM-aware
reshape accelerator integrated with 3D-stacked DRAM and accel-
erating data reorganization routines selected from the Intel Math
Kernel Library package. Our approach is orthogonal to 3D stacked
memory and could also be integrated into a system like the 3D
stacked HMC—in fact, it would allow a unification of the memory
network and AIMBus.

There is also work on tackling the limitations of processor pack-
aging pin-out by introducing new interconnects such as radio fre-
quency [7] and optical networks [42]. Although these technologies
are effective for overcoming the memory wall to some degree, they
are ultimately limited by the bandwidth achievable with their ag-
gregation of frequencies or wavelengths, as well as the aggregate
bandwidth of all DIMMs in the system. Our design is only limited by
the aggregate bandwidth of all DIMMs in the system, irrespective
of the bandwidth of the memory network or pin-out.

In addition to the above near memory computing architectures,
a distributed flash store has been proposed to accelerate big data
analytics (Blue Database Machine) [23] by putting accelerators
closer to disk. Our design is similar in that we integrate computation

with memory, but we do so at a different level where we may also
have closer communication with the CPU.

Finally, some prior work has been done in accelerating genomics
applications using FPGA-based hardware acceleration [8, 34]. How-
ever, these studies are limited in their scalability when adding new
memory modules. There has also been some work in using GPUs
for computational genomics like BWT [27] and the detection of
epistasis [24], which are much more power-hungry than our AIM
accelerators.

7 CONCLUSION

In this paper we present a novel, scalable and non-invasive near-
memory acceleration platform called AIM that interposes acceler-
ators near the DRAM. AIM envelopes the FPGA accelerators as
a separate package and places it between the DIMM and mem-
ory network. It uses off-the-shelf everything including OS, CPU,
DRAM, and memory controller. A much lower memory access la-
tency and scalable memory capacity and bandwidth are achieved
when adding more DIMMs into the system. Our design is ben-
eficial for highly data-parallel computations with poor locality
and bandwidth-intensive workloads—like computational genomics.
These tasks are heavily impacted by the overwhelming memory
wall bottleneck in conventional CPU-side acceleration platforms.
We demonstrate an up to 3.7x performance speedup of AIM com-
pared to the CPU-side acceleration.

8 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This work is
partially supported by the Center for Domain-Specific Computing
under the NSF InTrans Award CCF-1436827; funding from CDSC
industrial partners including Baidu, Fujitsu Labs, Google, Huawei,
Intel, IBM Research Almaden and Mentor Graphics; C-FAR, one of
the six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA; and UCLA Institute
for Digital Research and Education Postdoc Fellowship.

REFERENCES

[1] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data reorganization in
memory using 3D-stacked DRAM. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 131-143.

[2] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. 1990. Basic local alignment search tool. Journal of molecular biology
215, 3 (1990), 403-410.

[3] Vijay Anand. 2004. NVIDIA’s Scalable Link Interface (SLI). HardwareZone. com,
Fun 30 (2004).

[4] Alan Ashworth, Christopher J Lord, and Jorge S Reis-Filho. 2011. Genetic inter-
actions in cancer progression and treatment. Cell 145, 1 (2011), 30-38.

[5] Multi-Drop Bus. 2011. Multi-Drop Bus / Internal Communication Protocol. (2011).
http://www.vending.org/images/pdfs/technology/mdb_version_4-2.pdf

[6] Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson, Norbert
Wehn, and Kees Goossens. 2012. DRAMPower: Open-source DRAM power &
energy estimation tool. URL: http://www. drampower. info (2012).

[7] M.F. Chang, I. Verbauwhede, C. Chien, Z. Xu, J. Kim, J. Ko, Q. Gu, and B. Lai.

2005. Advanced RF/Baseband Interconnect Schemes for Inter- and Intra-ULSI

communications. In IEEE Transactions on Electron Devices.

Jason Chiang, Michael Studniberg, Jack Shaw, Stephen Seto, and Kevin Truong.

2006. Hardware accelerator for genomic sequence alignment. In Engineering in

Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference

of the IEEE. IEEE, 5787-5789.

Francis S Collins, Eric D Green, Alan E Guttmacher, and Mark S Guyer. 2003. A

vision for the future of genomics research. Nature 422, 6934 (2003), 835-847.

[10] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn

Reinman. 2012. Architecture support for accelerator-rich cmps. In Proceedings of

o
&

=

(1]

[12

[13

jpruny
N

=
&

[24]

[25

[26

[27

[28

[30

[31

(32]

(33]

[34

[35

(36]

the 49th Annual Design Automation Conference. ACM, 843-849.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn
Reinman. 2012. CHARM: a composable heterogeneous accelerator-rich micro-
processor. In Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design. ACM, 379-384.

Convey. 2015. [Online]. Available: (2015). http://www.conveycomputer.com/
products/hcseries/

Duncan G Elliott, Michael Stumm, W Martin Snelgrove, Christian Cojocaru,
and Robert McKenzie. 1999. Computational RAM: Implementing processors in
memory. Design & Test of Computers, IEEE 16, 1 (1999), 32-41.

Tom Feist. 2012. Vivado design suite. Xilinx, White Paper Version 1 (2012).
Hubertus Franke, Jimi Xenidis, Claude Basso, Brian M Bass, Sandra S Woodward,
Jeffrey D Brown, and Charles L Johnson. 2010. Introduction to the wire-speed
processor and architecture. IBM Journal of Research and Development 54, 1 (2010),
3-1.

Cristina Y Gonzalez, Marta Bleda, Francisco Salavert, Rubén Sanchez, Joaquin
Dopazo, and Ignacio Medina. 2013. Multicore and cloud-based solutions for ge-
nomic variant analysis. In Euro-Par 2012: Parallel Processing Workshops. Springer,
273-284.

Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011.
Dynamically specialized datapaths for energy efficient computing. In HPCA’11.
IEEE, 503-514.

Alan E Guttmacher, Amy L McGuire, Bruce Ponder, and Kari Stefansson. 2010.
Personalized genomic information: preparing for the future of genetic medicine.
Nature Reviews Genetics 11, 2 (2010), 161-165.

Intel HARP. 2015. [Online]. Available: (2015). http://www.sigarch.org/2015/01/17/
call-for-proposals-intel-altera- heterogeneous-architecture-research-platform-program/
Laiq Hasan, Zaid Al-Ars, and Stamatis Vassiliadis. 2007. Hardware acceleration of
sequence alignment algorithms-an overview. In Design & Technology of Integrated
Systems in Nanoscale Era, 2007. DTIS. International Conference on. IEEE, 92-97.
Analog ICs. 2012. NXP SEMICONDUCTOR Analog ICs. (2012).

Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM architecture
increases density and performance. In VLSI Technology (VLSIT), 2012 Symposium
on. IEEE, 87-88.

Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, and Arvind. 2016. BlueDBM: Distributed Flash Storage for Big
Data Analytics. ACM Trans. Comput. Syst. 34, 3, Article 7, 31 pages. https:
//doi.org/10.1145/2898996

Tony Kam-Thong, C-A Azencott, Lawrence Cayton, Benno Piitz, André Alt-
mann, Nazanin Karbalai, Philipp G Samann, Bernhard Schélkopf, Bertram Miiller-
Myhsok, and Karsten M Borgwardt. 2012. GLIDE: GPU-based linear regression
for detection of epistasis. Human heredity 73, 4 (2012), 220-236.

Joonyoung Kim and Younsu Kim. 2014. HBM: Memory Solution for Bandwidth-
Hungry Processors. In HotChips.

Christoforos Kozyrakis, Joseph Gebis, David Martin, Samuel Williams, Ioannis
Mavroidis, Steven Pope, Darren Jones, David Patterson, and Katherine Yelick.
2000. Vector IRAM: A media-oriented vector processor with embedded DRAM.
In Proc. Hot Chips XII.

Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-Ming Yiu. 2002. A
space and time efficient algorithm for constructing compressed suffix arrays. In
Computing and Combinatorics. Springer, 401-410.

Heng Li and Richard Durbin. 2010. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics 26, 5 (2010), 589-595.

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, Richard Durbin, et al. 2009. The sequence
alignment/map format and SAMtools. Bioinformatics 25, 16 (2009), 2078-2079.
Yongchao Liu and Bertil Schmidt. 2012. Evaluation of GPU-based seed generation
for computational genomics using Burrows-Wheeler transform. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International. IEEE, 684-690.

Peter S. Magnusson et al. 2002. Simics: A Full System Simulation Platform.
Computer 35 (2002), 50-58.

Teri A Manolio, Francis S Collins, Nancy J Cox, David B Goldstein, Lucia A Hin-
dorff, David J Hunter, Mark I McCarthy, Erin M Ramos, Lon R Cardon, Aravinda
Chakravarti, et al. 2009. Finding the missing heritability of complex diseases.
Nature 461, 7265 (2009), 747-753.

M. Martin et al. Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. In Computer Architecture New, Sep 2005.

Agathoklis Papadopoulos, Ioannis Kirmitzoglou, Vasilis] Promponas, and
Theocharis Theocharides. 2013. FPGA-based hardware acceleration for local
complexity analysis of massive genomic data. Integration, the VLSI Journal 46, 3
(2013), 230-239.

David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. 1997. A
case for intelligent RAM. MICRO’97 17, 2 (1997), 34-44.

Jonathan Pevsner. 2009. Bioinformatics and functional genomics. John Wiley &
Sons.

http://www.vending.org/images/pdfs/technology/mdb_version_4-2.pdf
http://www.conveycomputer.com/products/hcseries/
http://www.conveycomputer.com/products/hcseries/
http://www.sigarch.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
http://www.sigarch.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-architecture-research-platform-program/
https://doi.org/10.1145/2898996
https://doi.org/10.1145/2898996

[37

[38

[39]

[40

N
oy

[42]

[43]

[44]

[45]

[46

[47]

[48]

Louis-Noél Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. 2013.
Polyhedral-Based Data Reuse Optimization for Configurable Computing. In
21st ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA’13). ACM Press, Monterey, California.

Tuomo Rankinen, Aamir Zuberi, Yvon C Chagnon, S John Weisnagel, George
Argyropoulos, Brandon Walts, Louis Pérusse, and Claude Bouchard. 2006. The
human obesity gene map: the 2005 update. Obesity 14, 4 (2006), 529-644.

S. Kumar C. Paar J. Pelzl G. Pfeiffer M. Schimmler. 2009. Breaking Ciphers with
COPACOBANA .A Cost-Optimized Parallel Code Break.

Toshia Sunaga, Peter M Kogge, et al. 1996. A processor in memory chip for
massively parallel embedded applications. IEEE J. of Solid State Circuits (1996),
1556-1559.

Michael Tan, Paul Rosenberg, Jong Souk Yeo, Moray McLaren, Sagi Mathai, Terry
Morris, Huei Pei Kuo, Joseph Straznicky, Norman P Jouppi, and Shih-Yuan Wang.
2009. A high-speed optical multi-drop bus for computer interconnections. Applied
Physics A 95, 4 (2009), 945-953.

Michael Tan, Paul Rosenberg, Jong Souk Yeo, Moray McLaren, Sagi Mathai, Terry
Morris, Huei Pei Kuo, Joseph Straznicky, Norman P Jouppi, and Shih-Yuan Wang.
2009. A high-speed optical multi-drop bus for computer interconnections. Applied
Physics A 95, 4 (2009), 945-953.

M. Tan, P. Rosenberg, Jong Souk Yeo, M. McLaren, S. Mathai, T. Morris, J.
Straznicky, N.P. Jouppi, Huei Pei Kuo, Shih-Yuan Wang, S. Lerner, P. Kornilovich,
N. Meyer, R. Bicknell, C. Otis, and L. Seals. 2008. A High-Speed Optical Multi-
Drop Bus for Computer Interconnections. In High Performance Interconnects, 2008.
HOTI °08. 16th IEEE Symposium on. 3-10.

John Watkins, Raymond Roth, Michael Hsieh, William Radke, Donald Hejna,
Byung Kim, and Richard Tom. 1993. A memory controller with an integrated
graphics processor. In Computer Design: VLSI in Computers and Processors, 1993.
ICCD’93. Proceedings., 1993 IEEE International Conference on. IEEE, 324-338.
Scott M Williams, MD Ritchie, JA Phillips Iii, E Dawson, M Prince, E Dzhura,
A Willis, A Semenya, M Summar, BC White, et al. 2004. Multilocus analysis of
hypertension: a hierarchical approach. Human heredity 57, 1 (2004), 28-38.
Xilinx. 2014. Enabling High-Speed Radio Designs with Xilinx All Programmable
FPGAs and SoCs. (2014). Retrieved May 20, 2016 from http://www.xilinx.com/
support/documentation/white_papers/wp445_hi-speed-radio-design.pdf
Salessawi Ferede Yitbarek, Tao Yang, Reetuparna Das, and Todd Austin. 2016.
Exploring specialized near-memory processing for data intensive operations. In
2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1449-1452.

Eleftheria Zeggini, Michael N Weedon, Cecilia M Lindgren, Timothy M Frayling,
Katherine S Elliott, Hana Lango, Nicholas J Timpson, JR Perry, Nigel W Rayner,
Rachel M Freathy, et al. 2007. Wellcome Trust Case Control Consortium
(WTCCC), McCarthy MI, Hattersley AT: Replication of genome-wide associ-
ation signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 5829
(2007), 1336-1341.

http://www.xilinx.com/support/documentation/white_papers/wp445_hi-speed-radio-design.pdf
http://www.xilinx.com/support/documentation/white_papers/wp445_hi-speed-radio-design.pdf

	Abstract
	1 Introduction
	2 Genomics Applications and Their Memory Requirements
	2.1 Genomics Applications
	2.2 Memory Requirements of Genomics

	3 Accelerator-Interposed Memory
	3.1 AIM Design Philosophy
	3.2 AIM Module Implementation
	3.3 AIMBus Implementation
	3.4 AIM Programming

	4 Evaluation Methodology
	5 AIM Results
	5.1 Overall Performance Scalability
	5.2 Average Memory Access Latency
	5.3 Memory Network Bandwidth Utilization
	5.4 Aggregate Memory Bandwidth
	5.5 Energy Savings

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

